Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 48(21): 12234-12251, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33211885

RESUMO

Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.


Assuntos
Neoplasias do Colo/tratamento farmacológico , DNA Glicosilases/genética , DNA de Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Poli(ADP-Ribose) Polimerase-1/imunologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/mortalidade , Dano ao DNA , DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/metabolismo , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Guanina/análogos & derivados , Guanina/metabolismo , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Estresse Oxidativo , Poli(ADP-Ribose) Polimerase-1/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Análise de Sobrevida , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Basic Clin Pharmacol Toxicol ; 131(2): 95-103, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35708697

RESUMO

Autoimmune diseases and acute inflammation like sepsis cause significant morbidity and disability globally, and new targeted therapies are urgently needed. DNA repair and reactive oxygen species (ROS) pathways have long been investigated as targets for cancer treatment, but their role in immunological research has been limited. In this MiniReview, we discuss the DNA repair enzymes MTH1 and OGG1 as targets to treat both T cell-driven diseases and acute inflammation. The MiniReview is based on a PhD thesis where both enzymes were investigated with cell and animal models. For MTH1, we found that its inhibition selectively kills activated T cells without being toxic to resting cells or other tissues. MTH1 inhibition also had an alleviating role in disease models of psoriasis and multiple sclerosis. We further identified a novel MTH1low ROSlow phenotype among activated T cells. Regarding OGG1, we demonstrated a mechanism of action of the OGG1 inhibitor TH5487, which prevents the assembly of pro-inflammatory transcription factors and mitigates acute airway infection in mouse models of pneumonia. Hence, we propose both enzymes to be promising novel targets to treat inflammation and suggest that redox and DNA repair pathways could be useful targets for future immunomodulating therapies.


Assuntos
DNA Glicosilases , Monoéster Fosfórico Hidrolases , Animais , Benzimidazóis , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Inflamação/tratamento farmacológico , Camundongos , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Piperidinas , Espécies Reativas de Oxigênio/metabolismo
3.
Cell Death Differ ; 29(1): 246-261, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453118

RESUMO

T cell-driven diseases account for considerable morbidity and disability globally and there is an urgent need for new targeted therapies. Both cancer cells and activated T cells have an altered redox balance, and up-regulate the DNA repair protein MTH1 that sanitizes the oxidized nucleotide pool to avoid DNA damage and cell death. Herein we suggest that the up-regulation of MTH1 in activated T cells correlates with their redox status, but occurs before the ROS levels increase, challenging the established conception of MTH1 increasing as a direct response to an increased ROS status. We also propose a heterogeneity in MTH1 levels among activated T cells, where a smaller subset of activated T cells does not up-regulate MTH1 despite activation and proliferation. The study suggests that the vast majority of activated T cells have high MTH1 levels and are sensitive to the MTH1 inhibitor TH1579 (Karonudib) via induction of DNA damage and cell cycle arrest. TH1579 further drives the surviving cells to the MTH1low phenotype with altered redox status. TH1579 does not affect resting T cells, as opposed to the established immunosuppressor Azathioprine, and no sensitivity among other major immune cell types regarding their function can be observed. Finally, we demonstrate a therapeutic effect in a murine model of experimental autoimmune encephalomyelitis. In conclusion, we show proof of concept of the existence of MTH1high and MTH1low activated T cells, and that MTH1 inhibition by TH1579 selectively suppresses pro-inflammatory activated T cells. Thus, MTH1 inhibition by TH1579 may serve as a novel treatment option against autoreactive T cells in autoimmune diseases, such as multiple sclerosis.


Assuntos
Enzimas Reparadoras do DNA , Monoéster Fosfórico Hidrolases , Animais , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Contagem de Linfócitos , Camundongos , Monoéster Fosfórico Hidrolases/genética , Linfócitos T/metabolismo
4.
Hepatol Commun ; 6(5): 1016-1031, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34894107

RESUMO

Autoimmune hepatitis (AIH) is an inflammatory liver disease driven by the hyperactivation of various intrahepatic antigen-specific T cells due to a breach of immune tolerance. Studies in immunometabolism demonstrate that activated T cells harbor increased levels of reactive oxygen species that cause oxidative DNA damage. In this study, we assessed the potential of DNA damage repair enzyme MutT homolog 1 (MTH1) as a therapeutic target in AIH and karonudib as a novel drug for patients with AIH. We report herein that MTH1 expression was significantly increased in liver samples from patients with AIH compared to patients with chronic hepatitis B and nonalcoholic fatty liver disease and from healthy controls. In addition, the expression of MTH1 was positively correlated with AIH disease severity. We further found abundant T cells that expressed MTH1 in AIH. Next, we found that karonudib significantly altered T-cell receptor signaling in human T cells and robustly inhibited proliferation of human T cells in vitro. Interestingly, our data reflected a preferential inhibition of DNA damage repair in activated T cells by karonudib. Moreover, MTH1 was required to develop liver inflammation and damage because specific deletion of MTH1 in T cells ameliorated liver injury in the concanavalin A (Con A)-induced hepatitis model by inhibiting T-cell activation and proliferation. Lastly, we validated the protective effect of karonudib on the Con A-induced hepatitis model. Conclusion: MTH1 functions as a critical regulator in the development of AIH, and its inhibition in activated T cells reduces liver inflammation and damage.


Assuntos
Hepatite Autoimune , Concanavalina A/farmacologia , Dano ao DNA , Reparo do DNA , Hepatite Autoimune/tratamento farmacológico , Humanos , Inflamação/induzido quimicamente , Monoéster Fosfórico Hidrolases , Pirimidinas , Linfócitos T/metabolismo
5.
Science ; 376(6600): 1471-1476, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35737787

RESUMO

Oxidative DNA damage is recognized by 8-oxoguanine (8-oxoG) DNA glycosylase 1 (OGG1), which excises 8-oxoG, leaving a substrate for apurinic endonuclease 1 (APE1) and initiating repair. Here, we describe a small molecule (TH10785) that interacts with the phenylalanine-319 and glycine-42 amino acids of OGG1, increases the enzyme activity 10-fold, and generates a previously undescribed ß,δ-lyase enzymatic function. TH10785 controls the catalytic activity mediated by a nitrogen base within its molecular structure. In cells, TH10785 increases OGG1 recruitment to and repair of oxidative DNA damage. This alters the repair process, which no longer requires APE1 but instead is dependent on polynucleotide kinase phosphatase (PNKP1) activity. The increased repair of oxidative DNA lesions with a small molecule may have therapeutic applications in various diseases and aging.


Assuntos
Dano ao DNA , DNA Glicosilases , Reparo do DNA , Estresse Oxidativo , Biocatálise/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , DNA Glicosilases/química , DNA Glicosilases/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Ativação Enzimática , Glicina/química , Humanos , Ligantes , Estresse Oxidativo/genética , Fenilalanina/química , Especificidade por Substrato
6.
Nat Cancer ; 3(2): 156-172, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35228749

RESUMO

The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors.


Assuntos
Aminoidrolases , Leucemia Mieloide Aguda , Aminoidrolases/genética , Humanos , Hidrolases , Leucemia Mieloide Aguda/tratamento farmacológico , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Enzimas Multifuncionais/genética , Timidina
7.
J Invest Dermatol ; 141(8): 2037-2048.e4, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33676948

RESUMO

Inflammatory diseases, including psoriasis, are characterized by changes in redox regulation. The MTH1 prevents the incorporation of oxidized nucleotides during DNA replication. Using MTH1 small-molecule inhibitors, we found induced apoptosis through 8-oxodeoxyguanosine triphosphate accumulation and DNA double-strand breaks after oxidative stress in normal and malignant keratinocytes. In psoriasis, we detected increased MTH1 expression in lesional skin and PBMCs compared with that in the controls. Using the imiquimod psoriasis mouse model, we found that MTH1 inhibition diminished psoriatic histological characteristics and normalized the levels of neutrophils and T cells in the skin and skin-draining lymph nodes. The inhibition abolished the expression of T helper type 17‒associated cytokines in the skin, which was in line with decreased levels of IL-17-producing γδ T cells in lymph nodes. In human keratinocytes, MTH1 inhibition prevented the upregulation of IL-17‒downstream genes, which was independent of ROS-induced apoptosis. In conclusion, our data support MTH1 inhibition using small molecules suitable for topical application as a promising therapeutic approach to psoriasis.


Assuntos
Enzimas Reparadoras do DNA/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Psoríase/tratamento farmacológico , Pele/patologia , Administração Cutânea , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Biópsia , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imiquimode/administração & dosagem , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Monoéster Fosfórico Hidrolases/metabolismo , Cultura Primária de Células , Psoríase/imunologia , Psoríase/patologia , Pele/efeitos dos fármacos , Pele/imunologia
8.
Science ; 362(6416): 834-839, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30442810

RESUMO

The onset of inflammation is associated with reactive oxygen species and oxidative damage to macromolecules like 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA. Because 8-oxoguanine DNA glycosylase 1 (OGG1) binds 8-oxoG and because Ogg1-deficient mice are resistant to acute and systemic inflammation, we hypothesized that OGG1 inhibition may represent a strategy for the prevention and treatment of inflammation. We developed TH5487, a selective active-site inhibitor of OGG1, which hampers OGG1 binding to and repair of 8-oxoG and which is well tolerated by mice. TH5487 prevents tumor necrosis factor-α-induced OGG1-DNA interactions at guanine-rich promoters of proinflammatory genes. This, in turn, decreases DNA occupancy of nuclear factor κB and proinflammatory gene expression, resulting in decreased immune cell recruitment to mouse lungs. Thus, we present a proof of concept that targeting oxidative DNA repair can alleviate inflammatory conditions in vivo.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Benzimidazóis/farmacologia , DNA Glicosilases/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Piperidinas/farmacologia , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Benzimidazóis/uso terapêutico , DNA Glicosilases/metabolismo , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Técnicas de Inativação de Genes , Guanina/análogos & derivados , Guanina/antagonistas & inibidores , Guanina/metabolismo , Células HEK293 , Humanos , Inflamação/genética , Células Jurkat , Camundongos , Camundongos Mutantes , NF-kappa B/genética , NF-kappa B/metabolismo , Piperidinas/uso terapêutico , Regiões Promotoras Genéticas , Fator de Necrose Tumoral alfa/farmacologia
9.
Cancer Res ; 76(8): 2366-75, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26862114

RESUMO

Cancer cells are commonly in a state of redox imbalance that drives their growth and survival. To compensate for oxidative stress induced by the tumor redox environment, cancer cells upregulate specific nononcogenic addiction enzymes, such as MTH1 (NUDT1), which detoxifies oxidized nucleotides. Here, we show that increasing oxidative stress in nonmalignant cells induced their sensitization to the effects of MTH1 inhibition, whereas decreasing oxidative pressure in cancer cells protected against inhibition. Furthermore, we purified zebrafish MTH1 and solved the crystal structure of MTH1 bound to its inhibitor, highlighting the zebrafish as a relevant tool to study MTH1 biology. Delivery of 8-oxo-dGTP and 2-OH-dATP to zebrafish embryos was highly toxic in the absence of MTH1 activity. Moreover, chemically or genetically mimicking activated hypoxia signaling in zebrafish revealed that pathologic upregulation of the HIF1α response, often observed in cancer and linked to poor prognosis, sensitized embryos to MTH1 inhibition. Using a transgenic zebrafish line, in which the cellular redox status can be monitored in vivo, we detected an increase in oxidative pressure upon activation of hypoxic signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine protected embryos with activated hypoxia signaling against MTH1 inhibition, suggesting that the aberrant redox environment likely causes sensitization. In summary, MTH1 inhibition may offer a general approach to treat cancers characterized by deregulated hypoxia signaling or redox imbalance. Cancer Res; 76(8); 2366-75. ©2016 AACR.


Assuntos
Hipóxia Celular , Enzimas Reparadoras do DNA/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Transdução de Sinais , Microambiente Tumoral , Animais , Humanos , Oxirredução , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA