Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Acta Neuropathol ; 144(4): 691-706, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35980457

RESUMO

A carpet of ependymal motile cilia lines the brain ventricular system, forming a network of flow channels and barriers that pattern cerebrospinal fluid (CSF) flow at the surface. This CSF transport system is evolutionary conserved, but its physiological function remains unknown. Here we investigated its potential role in epilepsy with studies focused on CDKL5 deficiency disorder (CDD), a neurodevelopmental disorder with early-onset epilepsy refractory to seizure medications and the most common cause of infant epilepsy. CDKL5 is a highly conserved X-linked gene suggesting its function in regulating cilia length and motion in the green alga Chlamydomonas might have implication in the etiology of CDD. Examination of the structure and function of airway motile cilia revealed both the CDD patients and the Cdkl5 knockout mice exhibit cilia lengthening and abnormal cilia motion. Similar defects were observed for brain ventricular cilia in the Cdkl5 knockout mice. Mapping ependymal cilia generated flow in the ventral third ventricle (v3V), a brain region with important physiological functions showed altered patterning of flow. Tracing of cilia-mediated inflow into v3V with fluorescent dye revealed the appearance of a flow barrier at the inlet of v3V in Cdkl5 knockout mice. Analysis of mice with a mutation in another epilepsy-associated kinase, Yes1, showed the same disturbance of cilia motion and flow patterning. The flow barrier was also observed in the Foxj1± and FOXJ1CreERT:Cdkl5y/fl mice, confirming the contribution of ventricular cilia to the flow disturbances. Importantly, mice exhibiting altered cilia-driven flow also showed increased susceptibility to anesthesia-induced seizure-like activity. The cilia-driven flow disturbance arises from altered cilia beating orientation with the disrupted polarity of the cilia anchoring rootlet meshwork. Together these findings indicate motile cilia disturbances have an essential role in CDD-associated seizures and beyond, suggesting cilia regulating kinases may be a therapeutic target for medication-resistant epilepsy.


Assuntos
Cílios , Epilepsia , Animais , Encéfalo , Cílios/genética , Síndromes Epilépticas , Humanos , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética , Convulsões , Espasmos Infantis
3.
Schizophrenia (Heidelb) ; 10(1): 26, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413605

RESUMO

Genome-wide association studies suggest significant overlaps in Parkinson's disease (PD) and schizophrenia (SZ) risks, but the underlying mechanisms remain elusive. The protein-protein interaction network ('interactome') plays a crucial role in PD and SZ and can incorporate their spatiotemporal specificities. Therefore, to study the linked biology of PD and SZ, we compiled PD- and SZ-associated genes from the DisGeNET database, and constructed their interactomes using BioGRID and HPRD. We examined the interactomes using clustering and enrichment analyses, in conjunction with the transcriptomic data of 26 brain regions spanning foetal stages to adulthood available in the BrainSpan Atlas. PD and SZ interactomes formed four gene clusters with distinct temporal identities (Disease Gene Networks or 'DGNs'1-4). DGN1 had unique SZ interactome genes highly expressed across developmental stages, corresponding to a neurodevelopmental SZ subtype. DGN2, containing unique SZ interactome genes expressed from early infancy to adulthood, correlated with an inflammation-driven SZ subtype and adult SZ risk. DGN3 contained unique PD interactome genes expressed in late infancy, early and late childhood, and adulthood, and involved in mitochondrial pathways. DGN4, containing prenatally-expressed genes common to both the interactomes, involved in stem cell pluripotency and overlapping with the interactome of 22q11 deletion syndrome (comorbid psychosis and Parkinsonism), potentially regulates neurodevelopmental mechanisms in PD-SZ comorbidity. Our findings suggest that disrupted neurodevelopment (regulated by DGN4) could expose risk windows in PD and SZ, later elevating disease risk through inflammation (DGN2). Alternatively, variant clustering in DGNs may produce disease subtypes, e.g., PD-SZ comorbidity with DGN4, and early/late-onset SZ with DGN1/DGN2.

4.
Transl Psychiatry ; 13(1): 385, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092764

RESUMO

Anxiety disorders (ADs) are the most common form of mental disorder that affects millions of individuals worldwide. Although physiological studies have revealed the neural circuits related to AD symptoms, how AD-associated genes are spatiotemporally expressed in the human brain still remains unclear. In this study, we integrated genome-wide association studies of four human AD subtypes-generalized anxiety disorder, social anxiety disorder, panic disorder, and obsessive-compulsive disorder-with spatial gene expression patterns. Our investigation uncovered a novel division among AD-associated genes, marked by significant and distinct expression enrichments in the cerebral nuclei, limbic, and midbrain regions. Each gene cluster was associated with specific anxiety-related behaviors, signaling pathways, region-specific gene networks, and cell types. Notably, we observed a significant negative correlation in the temporal expression patterns of these gene clusters during various developmental stages. Moreover, the specific brain regions enriched in each gene group aligned with neural circuits previously associated with negative decision-making and anxious temperament. These results suggest that the two distinct gene clusters may underlie separate neural systems involved in anxiety. As a result, our findings bridge the gap between genes and neural circuitry, shedding light on the mechanisms underlying AD-associated behaviors.


Assuntos
Transtorno Obsessivo-Compulsivo , Transtorno de Pânico , Humanos , Estudo de Associação Genômica Ampla , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/diagnóstico , Ansiedade/genética , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno de Pânico/genética
5.
Genes (Basel) ; 13(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35456433

RESUMO

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease (CHD) affecting 1 in 5000 newborns. We constructed the interactome of 74 HLHS-associated genes identified from a large-scale mouse mutagenesis screen, augmenting it with 408 novel protein-protein interactions (PPIs) using our High-Precision Protein-Protein Interaction Prediction (HiPPIP) model. The interactome is available on a webserver with advanced search capabilities. A total of 364 genes including 73 novel interactors were differentially regulated in tissue/iPSC-derived cardiomyocytes of HLHS patients. Novel PPIs facilitated the identification of TOR signaling and endoplasmic reticulum stress modules. We found that 60.5% of the interactome consisted of housekeeping genes that may harbor large-effect mutations and drive HLHS etiology but show limited transmission. Network proximity of diabetes, Alzheimer's disease, and liver carcinoma-associated genes to HLHS genes suggested a mechanistic basis for their comorbidity with HLHS. Interactome genes showed tissue-specificity for sites of extracardiac anomalies (placenta, liver and brain). The HLHS interactome shared significant overlaps with the interactomes of ciliopathy- and microcephaly-associated genes, with the shared genes enriched for genes involved in intellectual disability and/or developmental delay, and neuronal death pathways, respectively. This supported the increased burden of ciliopathy variants and prevalence of neurological abnormalities observed among HLHS patients with developmental delay and microcephaly, respectively.


Assuntos
Ciliopatias , Síndrome do Coração Esquerdo Hipoplásico , Células-Tronco Pluripotentes Induzidas , Microcefalia , Malformações do Sistema Nervoso , Animais , Ciliopatias/metabolismo , Humanos , Síndrome do Coração Esquerdo Hipoplásico/genética , Síndrome do Coração Esquerdo Hipoplásico/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Recém-Nascido , Camundongos , Microcefalia/genética , Microcefalia/metabolismo , Miócitos Cardíacos/metabolismo
6.
Cell Stem Cell ; 29(5): 840-855.e7, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35395180

RESUMO

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease with 30% mortality from heart failure (HF) in the first year of life, but the cause of early HF remains unknown. Induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CM) from patients with HLHS showed that early HF is associated with increased apoptosis, mitochondrial respiration defects, and redox stress from abnormal mitochondrial permeability transition pore (mPTP) opening and failed antioxidant response. In contrast, iPSC-CM from patients without early HF showed normal respiration with elevated antioxidant response. Single-cell transcriptomics confirmed that early HF is associated with mitochondrial dysfunction accompanied with endoplasmic reticulum (ER) stress. These findings indicate that uncompensated oxidative stress underlies early HF in HLHS. Importantly, mitochondrial respiration defects, oxidative stress, and apoptosis were rescued by treatment with sildenafil to inhibit mPTP opening or TUDCA to suppress ER stress. Together these findings point to the potential use of patient iPSC-CM for modeling clinical heart failure and the development of therapeutics.


Assuntos
Cardiopatias Congênitas , Insuficiência Cardíaca , Células-Tronco Pluripotentes Induzidas , Antioxidantes/metabolismo , Cardiopatias Congênitas/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Poro de Transição de Permeabilidade Mitocondrial , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
7.
Sci Rep ; 11(1): 18392, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526518

RESUMO

Mechanisms underlying anxiety disorders remain elusive despite the discovery of several associated genes. We constructed the protein-protein interaction networks (interactomes) of six anxiety disorders and noted enrichment for striatal expression among common genes in the interactomes. Five of these interactomes shared distinctive overlaps with the interactomes of genes that were differentially expressed in two striatal compartments (striosomes and matrix). Generalized anxiety disorder and social anxiety disorder interactomes showed exclusive and statistically significant overlaps with the striosome and matrix interactomes, respectively. Systematic gene expression analysis with the anxiety disorder interactomes constrained to contain only those genes that were shared with striatal compartment interactomes revealed a bifurcation among the disorders, which was influenced by the anterior cingulate cortex, nucleus accumbens, amygdala and hippocampus, and the dopaminergic signaling pathway. Our results indicate that the functionally distinct striatal pathways constituted by the striosome and the matrix may influence the etiological differentiation of various anxiety disorders.


Assuntos
Ansiedade/etiologia , Ansiedade/metabolismo , Biomarcadores , Conectoma , Corpo Estriado/metabolismo , Fobia Social/etiologia , Fobia Social/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Vias Neurais , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transdução de Sinais
8.
Cancers (Basel) ; 13(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916178

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive cancer affecting the outer lining of the lung, with a median survival of less than one year. We constructed an 'MPM interactome' with over 300 computationally predicted protein-protein interactions (PPIs) and over 2400 known PPIs of 62 literature-curated genes whose activity affects MPM. Known PPIs of the 62 MPM associated genes were derived from Biological General Repository for Interaction Datasets (BioGRID) and Human Protein Reference Database (HPRD). Novel PPIs were predicted by applying the HiPPIP algorithm, which computes features of protein pairs such as cellular localization, molecular function, biological process membership, genomic location of the gene, and gene expression in microarray experiments, and classifies the pairwise features as interacting or non-interacting based on a random forest model. We validated five novel predicted PPIs experimentally. The interactome is significantly enriched with genes differentially ex-pressed in MPM tumors compared with normal pleura and with other thoracic tumors, genes whose high expression has been correlated with unfavorable prognosis in lung cancer, genes differentially expressed on crocidolite exposure, and exosome-derived proteins identified from malignant mesothelioma cell lines. 28 of the interactors of MPM proteins are targets of 147 U.S. Food and Drug Administration (FDA)-approved drugs. By comparing disease-associated versus drug-induced differential expression profiles, we identified five potentially repurposable drugs, namely cabazitaxel, primaquine, pyrimethamine, trimethoprim and gliclazide. Preclinical studies may be con-ducted in vitro to validate these computational results. Interactome analysis of disease-associated genes is a powerful approach with high translational impact. It shows how MPM-associated genes identified by various high throughput studies are functionally linked, leading to clinically translatable results such as repurposed drugs. The PPIs are made available on a webserver with interactive user interface, visualization and advanced search capabilities.

9.
Res Sq ; 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32702714

RESUMO

World over, people are looking for solutions to tackle the pandemic coronavirus disease (COVID-19) caused by the virus SARS-CoV-2/nCoV-19. Notable contributions in biomedical field have been characterizing viral genomes, host transcriptomes and proteomes, repurposable drugs and vaccines. In one such study, 332 human proteins targeted by nCoV19 were identified. We expanded this set of host proteins by constructing their protein interactome, including in it not only the known protein-protein interactions (PPIs) but also novel, hitherto unknown PPIs predicted with our High-precision Protein-Protein Interaction Prediction (HiPPIP) model that was shown to be highly accurate. In fact, one of the earliest discoveries made possible by HiPPIP is related to activation of immunity upon viral infection. We found that several interactors of the host proteins are differentially expressed upon viral infection, are related to highly relevant pathways, and that the novel interaction of NUP98 with CHMP5 may activate an antiviral mechanism leading to disruption of viral budding. We are making the interactions available as downloadable files to facilitate future systems biology studies and also on a web-server at http://hagrid.dbmi.pitt.edu/corona that allows not only keyword search but also queries such as "PPIs where one protein is associated with 'virus' and the interactors with 'pulmonary'".

10.
Res Sq ; 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32702734

RESUMO

We previously presented the protein-protein interaction network - the 'HoP' or the host protein interactome - of 332 host proteins that were identified to interact with 27 nCoV19 viral proteins by Gordon et al. Here, we studied drugs targeting the proteins in this interactome to identify whether any of them may potentially be repurposable against SARS-CoV-2. We studied each of the drugs using the BaseSpace Correlation Engine and identified those that induce gene expression profiles negatively correlated with SARS-associated expression profile. This analysis resulted in 20 drugs whose differential gene expression (drug versus normal) had an anti-correlation with differential expression for SARS (viral infection versus normal). These included drugs that were already being tested for their clinical activity against SARS-CoV-2, those with proven activity against SARS-CoV/MERS-CoV, broad-spectrum antiviral drugs, and those identified/prioritized by other computational re-purposing studies. In summary, our integrated computational analysis of the HoP interactome in conjunction with drug-induced transcriptomic data resulted in drugs that may be repurposable for COVID-19.

11.
Hum Genome Var ; 7(1): 40, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33298903

RESUMO

A palindrome in DNA is like a palindrome in language, but when read backwards, it is a complement of the forward sequence; effectively, the two halves of a sequence complement each other from its midpoint like in a double strand of DNA. Palindromes are distributed throughout the human genome and play significant roles in gene expression and regulation. Palindromic mutations are linked to many human diseases, such as neuronal disorders, mental retardation, and various cancers. In this work, we computed and analyzed the palindromic sequences in the human genome and studied their conservation in personal genomes using 1000 Genomes data. We found that ~30% of the palindromes exhibit variation, some of which are caused by rare variants. The analysis of disease/trait-associated single-nucleotide polymorphisms in palindromic regions showed that disease-associated risk variants are 14 times more likely to be present in palindromic regions than in other regions. The catalog of palindromes in the reference genome and 1000 Genomes is being made available here with details on their variations in each individual genome to serve as a resource for future and retrospective whole-genome studies identifying statistically significant palindrome variations associated with diseases or traits and their roles in disease mechanisms.

12.
Sci Rep ; 10(1): 15629, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973177

RESUMO

Cilia are dynamic microtubule-based organelles present on the surface of many eukaryotic cell types and can be motile or non-motile primary cilia. Cilia defects underlie a growing list of human disorders, collectively called ciliopathies, with overlapping phenotypes such as developmental delays and cognitive and memory deficits. Consistent with this, cilia play an important role in brain development, particularly in neurogenesis and neuronal migration. These findings suggest that a deeper systems-level understanding of how ciliary proteins function together may provide new mechanistic insights into the molecular etiologies of nervous system defects. Towards this end, we performed a protein-protein interaction (PPI) network analysis of known intraflagellar transport, BBSome, transition zone, ciliary membrane and motile cilia proteins. Known PPIs of ciliary proteins were assembled from online databases. Novel PPIs were predicted for each ciliary protein using a computational method we developed, called High-precision PPI Prediction (HiPPIP) model. The resulting cilia "interactome" consists of 165 ciliary proteins, 1,011 known PPIs, and 765 novel PPIs. The cilia interactome revealed interconnections between ciliary proteins, and their relation to several pathways related to neuropsychiatric processes, and to drug targets. Approximately 184 genes in the cilia interactome are targeted by 548 currently approved drugs, of which 103 are used to treat various diseases of nervous system origin. Taken together, the cilia interactome presented here provides novel insights into the relationship between ciliary protein dysfunction and neuropsychiatric disorders, for e.g. interconnections of Alzheimer's disease, aging and cilia genes. These results provide the framework for the rational design of new therapeutic agents for treatment of ciliopathies and neuropsychiatric disorders.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/patologia , Cílios/metabolismo , Cílios/patologia , Ciliopatias/patologia , Doenças do Sistema Nervoso/patologia , Mapas de Interação de Proteínas , Doença de Alzheimer/metabolismo , Ciliopatias/metabolismo , Biologia Computacional , Humanos , Doenças do Sistema Nervoso/metabolismo , Transporte Proteico
13.
Sci Rep ; 9(1): 12682, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481665

RESUMO

We previously presented the protein-protein interaction network of schizophrenia associated genes, and from it, the drug-protein interactome which showed the drugs that target any of the proteins in the interactome. Here, we studied these drugs further to identify whether any of them may potentially be repurposable for schizophrenia. In schizophrenia, gene expression has been described as a measurable aspect of the disease reflecting the action of risk genes. We studied each of the drugs from the interactome using the BaseSpace Correlation Engine, and shortlisted those that had a negative correlation with differential gene expression of schizophrenia. This analysis resulted in 12 drugs whose differential gene expression (drug versus normal) had an anti-correlation with differential expression for schizophrenia (disorder versus normal). Some of these drugs were already being tested for their clinical activity in schizophrenia and other neuropsychiatric disorders. Several proteins in the protein interactome of the targets of several of these drugs were associated with various neuropsychiatric disorders. The network of genes with opposite drug-induced versus schizophrenia-associated expression profiles were significantly enriched in pathways relevant to schizophrenia etiology and GWAS genes associated with traits or diseases that had a pathophysiological overlap with schizophrenia. Drugs that targeted the same genes as the shortlisted drugs, have also demonstrated clinical activity in schizophrenia and other related disorders. This integrated computational analysis will help translate insights from the schizophrenia drug-protein interactome to clinical research - an important step, especially in the field of psychiatric drug development which faces a high failure rate.


Assuntos
Anticonvulsivantes/uso terapêutico , Reposicionamento de Medicamentos , Mapas de Interação de Proteínas/genética , Esquizofrenia/tratamento farmacológico , Acetazolamida/química , Acetazolamida/metabolismo , Acetazolamida/uso terapêutico , Anticonvulsivantes/química , Anticonvulsivantes/metabolismo , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Hidroxicolecalciferóis/química , Hidroxicolecalciferóis/metabolismo , Hidroxicolecalciferóis/uso terapêutico , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Esquizofrenia/patologia
15.
F1000Res ; 5: 1919, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29333229

RESUMO

After the first reported case of Zika virus in Brazil, in 2015, a significant increase in the reported cases of microcephaly was observed. Microcephaly is a neurological condition in which the infant's head is significantly smaller with complications in brain development. Recently, two small membrane-associated interferon-inducible transmembrane proteins (IFITM1 and IFITM3) have been shown to repress members of the flaviviridae family which includes the Zika virus. However, the exact mechanisms leading to the inhibition of the virus are yet unknown. Here, we assembled an interactome of IFITM1 and IFITM3 with known protein-protein interactions (PPIs) collected from publicly available databases and novel PPIs predicted using High-confidence Protein-Protein Interaction Prediction (HiPPIP) model. We analyzed the functional and pathway associations of the interacting proteins, and found that there are several immunity pathways (interferon signaling, cd28 signaling in T-helper cells crosstalk between dendritic cells and natural killer cells), neuronal pathways (axonal guidance signaling, neural tube closure and actin cytoskeleton signaling) and developmental pathways that are associated with these interactors. These results could help direct future research in elucidating the mechanisms underlying the viral immunity to Zika virus and other flaviviruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA