RESUMO
Long-term inhalation exposure to manganese (Mn) metal or its inorganic compounds can result in manganism or subclinical neurofunctional deficits. Studies have described affected workers in Mn dioxide mining, Mn-containing ore crushing and milling facilities, manufacturing of dry-cell batteries, Mn steel and alloy production plants, and in welders. The objective of this study was to critically review existing evidence on the reliability of potential biomarkers of Mn exposure, specifically the relationship between inhalation exposure to Mn particulates in different occupational settings and Mn concentrations in blood and other biological fluids and tissues, with a particular focus on whole blood as a potentially useful medium for measuring internal tissue dose. We also examined available evidence on the relationship between Mn levels in blood and adverse clinical and subclinical neurotoxic outcomes. Three bibliographic databases were searched for relevant studies and identified references were screened by two independent reviewers. Of the 6338 unique references identified, 76 articles were retained for data abstraction. Findings indicate that the relationships between Mn in blood and both external Mn exposure indices and neurofunctional impairments are limited and inconsistent. Different sources of exposure to Mn compounds, heterogeneity in the methodological approaches, and inadequate reporting of essential information limited direct comparison of the reported findings. Among the Mn-exposure biomarkers considered in this review - including biomarkers in blood, plasma, serum, erythrocytes, urine, bone, toenails, fingernails, hair, saliva - biomarkers in whole blood may provide to be most useful in Mn biomonitoring and risk assessment.
Assuntos
Manganês , Exposição Ocupacional , Humanos , Manganês/toxicidade , Manganês/análise , Reprodutibilidade dos Testes , Exposição Ocupacional/análise , Metais , BiomarcadoresRESUMO
Abstract Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007) . Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of "total Al"assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al(+3) to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)(+2) and Al(H2O)6 (+3)] that after complexation with O2(â¢-), generate Al superoxides [Al(O2(â¢))](H2O5)](+2). Semireduced AlO2(â¢) radicals deplete mitochondrial Fe and promote generation of H2O2, O2 (â¢-) and OH(â¢). Thus, it is the Al(+3)-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer's disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances.
Assuntos
Hidróxido de Alumínio/toxicidade , Óxido de Alumínio/toxicidade , Alumínio/toxicidade , Nanopartículas/toxicidade , Exposição Ocupacional/efeitos adversos , Animais , Carcinogênese/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sistema Endócrino/efeitos dos fármacos , Europa (Continente) , Trato Gastrointestinal/efeitos dos fármacos , Guias como Assunto/normas , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto , Sistema Respiratório/efeitos dos fármacos , Medição de Risco , Fatores de RiscoRESUMO
New European legislation known as REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) was introduced in 2007 to increase the speed at which the health and/or environmental risks of industrial chemicals were being assessed and managed (REACH (EC) No 1907/2006). REACH consolidated earlier chemicals-control statutes and placed the burden of assessing, and identifying the means to manage risks on industry. This paper details the REACH process for controlling and managing hazardous chemicals and challenges encountered in applying the provisions of REACH and the guidance documents available from European Chemical Agency. Special attention is paid to challenges in evaluating potential health risks of metals such as aluminum and aluminum compounds. Lessons learned from over a decade of experience with REACH legislation are also noted.
Assuntos
Indústria Química/legislação & jurisprudência , Metais/toxicidade , Testes de Toxicidade , Animais , Europa (Continente) , União Europeia , Regulamentação Governamental , Humanos , Formulação de Políticas , Medição de RiscoRESUMO
The European Union's REACH Regulation requires determination of potential health and environmental effects of chemicals in commerce. The present case study examines the application of REACH guidance for health hazard assessments of three high production volume (HPV) aluminium (Al) substances: metallic aluminium, aluminium oxide, and aluminium hydroxide. Among the potential adverse health consequences of aluminium exposure, neurotoxicity is one of the most sensitive targets of Al toxicity and the most critical endpoint. This case study illustrates integration of data from multiple lines of evidence into REACH weight of evidence evaluations. This case study then explains how those results support regulatory decisions on classification and labelling. Challenges in the REACH appraisal of Al compounds include speciation, solubility and bioavailability, application of assessment factors, read-across rationale and differences with existing regulatory standards. Lessons learned from the present case study relate to identification and evaluation of toxicologic and epidemiologic data; assessing data relevance and reliability; development of derived no-effect levels (DNELs); addressing data gaps and preparation of chemical safety reports.
Assuntos
Hidróxido de Alumínio/toxicidade , Óxido de Alumínio/toxicidade , Alumínio/toxicidade , Sistema Nervoso/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Testes de Toxicidade , Alumínio/farmacocinética , Hidróxido de Alumínio/farmacocinética , Óxido de Alumínio/farmacocinética , Animais , Europa (Continente) , União Europeia , Humanos , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Sistema Nervoso/fisiopatologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Medição de Risco , ToxicocinéticaRESUMO
This paper describes data from a systematic review and meta-analysis [1] conducted to identify and evaluate published peer reviewed evidence on the association between perineal use of talc powder and risk of ovarian cancer. These data were collected from multiple electronic bibliographic databases, as well as from grey literature sources, without applying time, language or other filters. A meta-analysis was conducted to quantitatively assess the ovarian cancer risk in relation to talc use and other potential risk factors.
RESUMO
Over the past four decades, there has been increasing concern that perineal use of talc powder, a commonly used personal care product, might be associated with an increased risk of ovarian cancer. OBJECTIVES: To critically review all available human epidemiological data on the relationship between perineal use of talc powder and ovarian cancer, with consideration of other relevant experimental evidence. METHODOLOGY: We identified 30 human studies for qualitative assessment of evidence, including 27 that were retained for further quantitative analysis. RESULTS: A positive association between perineal use of talc powder and ovarian cancer was found [OR: 1.28 (95% CI: 1.20-1.37)]. A significant risk was noted in Hispanics and Whites, in women applying talc to underwear, in pre-menopausal women and in post-menopausal women receiving hormonal therapy. A negative association was noted with tubal ligation. CONCLUSION: Perineal use of talc powder is a possible cause of human ovarian cancer.
Assuntos
Neoplasias Ovarianas/induzido quimicamente , Períneo , Talco/toxicidade , Animais , Feminino , Humanos , Neoplasias Ovarianas/epidemiologiaRESUMO
INTRODUCTION: Manganese is an essential nutrient which can cause adverse effects if ingested to excess or in insufficient amounts, leading to a U-shaped exposure-response relationship. Methods have recently been developed to describe such relationships by simultaneously modeling the exposure-response curves for excess and deficiency. These methods incorporate information from studies with diverse adverse health outcomes within the same analysis by assigning severity scores to achieve a common response metric for exposure-response modeling. OBJECTIVE: We aimed to provide an estimate of the optimal dietary intake of manganese to balance adverse effects from deficient or excess intake. METHODS: We undertook a systematic review of the literature from 1930 to 2013 and extracted information on adverse effects from manganese deficiency and excess to create a database on manganese toxicity following oral exposure. Although data were available for seven different species, only the data from rats was sufficiently comprehensive to support analytical modelling. The toxicological outcomes were standardized on an 18-point severity scale, allowing for a common analysis of all available toxicological data. Logistic regression modelling was used to simultaneously estimate the exposure-response profile for dietary deficiency and excess for manganese and generate a U-shaped exposure-response curve for all outcomes. RESULTS: Data were available on the adverse effects of 6113 rats. The nadir of the U-shaped joint response curve occurred at a manganese intake of 2.70mg/kgbw/day with a 95% confidence interval of 2.51-3.02. The extremes of both deficient and excess intake were associated with a 90% probability of some measurable adverse event. CONCLUSION: The manganese database supports estimation of optimal intake based on combining information on adverse effects from systematic review of published experiments. There is a need for more studies on humans. Translation of our results from rats to humans will require adjustment for interspecies differences in sensitivity to manganese.
Assuntos
Modelos Logísticos , Intoxicação por Manganês , Manganês/toxicidade , Animais , Bases de Dados Bibliográficas/estatística & dados numéricos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Intoxicação por Manganês/etiologia , RatosRESUMO
Characterizing the U-shaped exposure response relationship for manganese (Mn) is necessary for estimating the risk of adverse health from Mn toxicity due to excess or deficiency. Categorical regression has emerged as a powerful tool for exposure-response analysis because of its ability to synthesize relevant information across multiple studies and species into a single integrated analysis of all relevant data. This paper documents the development of a database on Mn toxicity designed to support the application of categorical regression techniques. Specifically, we describe (i) the conduct of a systematic search of the literature on Mn toxicity to gather data appropriate for dose-response assessment; (ii) the establishment of inclusion/exclusion criteria for data to be included in the categorical regression modeling database; (iii) the development of a categorical severity scoring matrix for Mn health effects to permit the inclusion of diverse health outcomes in a single categorical regression analysis using the severity score as the outcome variable; and (iv) the convening of an international expert panel to both review the severity scoring matrix and assign severity scores to health outcomes observed in studies (including case reports, epidemiological investigations, and in vivo experimental studies) selected for inclusion in the categorical regression database. Exposure information including route, concentration, duration, health endpoint(s), and characteristics of the exposed population was abstracted from included studies and stored in a computerized manganese database (MnDB), providing a comprehensive repository of exposure-response information with the ability to support categorical regression modeling of oral exposure data.