Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(3): 537-551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337035

RESUMO

A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.


Assuntos
COVID-19 , Infecções Respiratórias , Vacinas , Cricetinae , Animais , Camundongos , Linfócitos T CD8-Positivos , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Pan troglodytes
3.
Mol Ther ; 31(9): 2600-2611, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37452494

RESUMO

B cells are the antibody-producing arm of the adaptive immune system and play a critical role in controlling pathogens. Several groups have now demonstrated the feasibility of using engineered B cells as a therapy, including infectious disease control and gene therapy of serum deficiencies. These studies have largely utilized ex vivo modification of the cells. Direct in vivo engineering would be of utility to the field, particularly in infectious disease control where the infrastructure needs of ex vivo cell modification would make a broad vaccination campaign highly challenging. In this study we demonstrate that engineered adenoviral vectors are capable of efficiently transducing murine and human primary B cells both ex vivo and in vivo. We found that unmodified human adenovirus C5 was capable of infecting B cells in vivo, likely due to interactions between the virus penton base protein and integrins. We further describe vector modification with B cell-specific gene promoters and successfully restrict transgene expression to B cells, resulting in a strong reduction in gene expression from the liver, the main site of human adenovirus C5 infection in vivo.


Assuntos
Adenoviridae , Doenças Transmissíveis , Camundongos , Humanos , Animais , Adenoviridae/genética , Vetores Genéticos/genética , Terapia Genética/métodos , Proteínas Virais/genética , Linfócitos B
4.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32102889

RESUMO

Human adenoviruses have many attractive features for gene therapy applications. However, the high prevalence of preexisting immunity against these viruses in general populations worldwide has greatly limited their clinical utility. In addition, the most commonly used human adenovirus, human adenovirus subgroup C serotype 5 (HAd5), when systemically administered, triggers systemic inflammation and toxicity, with the liver being the most severely affected organ. Here, we evaluated the utility and safety of a new low-seroprevalence gorilla adenovirus (GAd; GC46) as a gene transfer vector in mice. Biodistribution studies revealed that systemically administered GAd had a selective and robust lung endothelial cell (EC) tropism with minimal vector expression throughout many other organs and tissues. Administration of a high dose of GAd accomplished extensive transgene expression in the lung yet elicited no detectable inflammatory histopathology in this organ. Furthermore, GAd, unlike HAd5, did not exhibit hepatotropism or induce liver inflammatory toxicity in mice, demonstrating the exceptional safety profile of the vector vis-à-vis systemic utility. We further demonstrated that the GAd capsid fiber shared the flexibility of the HAd5 equivalent for permitting genetic modification; GAd with the pan-EC-targeting ligand myeloid cell-binding peptide (MBP) incorporated in the capsid displayed a reduced lung tropism and efficiently retargeted gene expression to vascular beds in other organs.IMPORTANCE In the aggregate, our mouse studies suggest that GAd is a promising gene therapy vector that utilizes lung ECs as a source of therapeutic payload production and a highly desirable toxicity profile. Further genetic engineering of the GAd capsid holds the promise of in vivo vector tropism modification and targeting.


Assuntos
Adenoviridae/genética , Capsídeo/metabolismo , Vetores Genéticos , Gorilla gorilla/virologia , Pulmão/metabolismo , Tropismo/imunologia , Infecções por Adenoviridae/patologia , Infecções por Adenoviridae/virologia , Adenovírus Humanos/genética , Animais , Proteínas do Capsídeo/genética , Células Endoteliais , Expressão Gênica , Terapia Genética , Fígado , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Estudos Soroepidemiológicos , Transdução Genética , Transgenes , Vírion
6.
Infect Immun ; 83(1): 286-91, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25368111

RESUMO

Hemolytic-uremic syndrome (HUS), caused by Shiga toxin (Stx)-producing Escherichia coli (STEC), remains untreatable. Production of human monoclonal antibodies against Stx, which are highly effective in preventing Stx sequelae in animal models, is languishing due to cost and logistics. We reported previously that the production and evaluation of a camelid heavy-chain-only VH domain (VHH)-based neutralizing agent (VNA) targeting Stx1 and Stx2 (VNA-Stx) protected mice from Stx1 and Stx2 intoxication. Here we report that a single intramuscular (i.m.) injection of a nonreplicating adenovirus (Ad) vector carrying a secretory transgene of VNA-Stx (Ad/VNA-Stx) protected mice challenged with Stx2 and protected gnotobiotic piglets infected with STEC from fatal systemic intoxication. One i.m. dose of Ad/VNA-Stx prevented fatal central nervous system (CNS) symptoms in 9 of 10 animals when it was given to piglets 24 h after bacterial challenge and in 5 of 9 animals when it was given 48 h after bacterial challenge, just prior to the onset of CNS symptoms. All 6 placebo animals died or were euthanized with severe CNS symptoms. Ad/VNA-Stx treatment had no impact on diarrhea. In conclusion, Ad/VNA-Stx treatment is effective in protecting piglets from fatal Stx2-mediated CNS complications following STEC challenge. With a low production cost and further development, this could presumably be an effective treatment for patients with HUS and/or individuals at high risk of developing HUS due to exposure to STEC.


Assuntos
Adenovírus Humanos/genética , Anticorpos Neutralizantes/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli O157/imunologia , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Toxina Shiga I/antagonistas & inibidores , Toxina Shiga II/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/genética , Modelos Animais de Doenças , Portadores de Fármacos/administração & dosagem , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/genética , Feminino , Vetores Genéticos , Síndrome Hemolítico-Urêmica/imunologia , Síndrome Hemolítico-Urêmica/microbiologia , Injeções Intramusculares , Camundongos , Toxina Shiga I/imunologia , Toxina Shiga II/imunologia , Análise de Sobrevida , Suínos , Fatores de Tempo
7.
Mol Imaging ; 132014.
Artigo em Inglês | MEDLINE | ID: mdl-25249483

RESUMO

A significant limiting factor to the human clinical application of conditionally replicative adenovirus (CRAd)-based virotherapy is the inability to noninvasively monitor these agents and their potential persistence. To address this issue, we proposed a novel imaging approach that combines transient expression of the human somatostatin receptor (SSTR) subtype 2 reporter gene with genetic labeling of the viral capsid with mCherry fluorescent protein. To test this dual modality system, we constructed the Ad5/3Δ24pIXcherry/SSTR CRAd and validated its capacity to generate fluorescent and nuclear signals in vitro and following intratumoral injection. Analysis of 64Cu-CB-TE2A-Y3-TATE biodistribution in mice revealed reduced uptake in tumors injected with the imaging CRAd relative to the replication-incompetent, Ad-expressing SSTR2 but significantly greater uptake compared to the negative CRAd control. Optical imaging demonstrated relative correlation of fluorescent signal with virus replication as determined by viral genome quantification in tumors. Positron emission tomography/computed tomography studies demonstrated that we can visualize radioactive uptake in tumors injected with imaging CRAd and the trend for greater uptake by standardized uptake value analysis compared to control CRAd. In the aggregate, the plasticity of our dual imaging approach should provide the technical basis for monitoring CRAd biodistribution and persistence in preclinical studies while offering potential utility for a range of clinical applications.


Assuntos
Adenoviridae/fisiologia , Capsídeo/fisiologia , Substâncias Luminescentes/metabolismo , Proteínas Luminescentes/metabolismo , Neoplasias Ovarianas/virologia , Receptores de Somatostatina/metabolismo , Animais , Capsídeo/química , Linhagem Celular Tumoral , Complexos de Coordenação/farmacocinética , Feminino , Células HEK293 , Humanos , Camundongos , Transplante de Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Peptídeos/farmacocinética , Receptores de Somatostatina/genética , Replicação Viral , Proteína Vermelha Fluorescente
8.
Mol Ther ; 21(4): 758-66, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23319057

RESUMO

Hepatocellular carcinoma (HCC) is a highly fatal disease mandating development of novel, targeted therapies to elicit prolonged survival benefit to the patients. Insulin-like growth factor-binding protein-7 (IGFBP7), a secreted protein belonging to the IGFBP family, functions as a potential tumor suppressor for HCC. In the present study, we evaluated the therapeutic efficacy of a replication-incompetent adenovirus expressing IGFBP7 (Ad.IGFBP7) in human HCC. Ad.IGFBP7 profoundly inhibited viability and induced apoptosis in multiple human HCC cell lines by inducing reactive oxygen species (ROS) and activating a DNA damage response (DDR) and p38 MAPK. In orthotopic xenograft models of human HCC in athymic nude mice, intravenous administration of Ad.IGFBP7 profoundly inhibited primary tumor growth and intrahepatic metastasis. In a nude mice subcutaneous model, xenografts from human HCC cells were established in both flanks and only left-sided tumors received intratumoral injection of Ad.IGFBP7. Growth of both left-sided injected tumors and right-sided uninjected tumors were markedly inhibited by Ad.IGFBP7 with profound suppression of angiogenesis. These findings indicate that Ad.IGFBP7 might be a potent therapeutic eradicating both primary HCC and distant metastasis and might be an effective treatment option for terminal HCC patients.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Adenoviridae/genética , Animais , Carcinoma Hepatocelular/genética , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Gynecol Oncol ; 130(3): 518-24, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23756180

RESUMO

OBJECTIVE: The conditionally replicative adenovirus Ad5/3-Δ24 has a type-3 knob incorporated into the type-5 fiber that facilitates enhanced ovarian cancer infectivity. Preclinical studies have shown that Ad5/3-Δ24 achieves significant oncolysis and anti-tumor activity in ovarian cancer models. The purpose of this study was to evaluate in a phase I trial the feasibility and safety of intraperitoneal (IP) Ad5/3-Δ24 in recurrent ovarian cancer patients. METHODS: Eligible patients were treated with IP Ad5/3-Δ24 for 3 consecutive days in one of three dose cohorts ranging 1 × 10(10)-1 × 10(12)vp. Toxicity was assessed utilizing CTC grading and efficacy with RECIST. Ascites, serum, and other samples were obtained to evaluate gene transfer, generation of wildtype virus, viral shedding, and antibody response. RESULTS: Nine of 10 patients completed treatment per protocol. A total of 15 vector-related adverse events were experienced in 5 patients. These events included fever or chills, nausea, fatigue, and myalgia. All were grades 1-2 in nature, transient, and medically managed. Of the 8 treated patients evaluable for response, six patients had stable disease and 2 patients had progressive disease. Three patients had decreased CA-125 from pretreatment levels one month after treatment. Ancillary biologic studies indicated Ad5/3-Δ24 replication in patients in the higher dose cohorts. All patients experienced an anti-adenoviral neutralizing antibody effect. CONCLUSIONS: This study suggests the feasibility and safety of a serotype chimeric infectivity-enhanced CRAd, Ad5/3-Δ24, as a potential therapeutic option for recurrent ovarian cancer patients.


Assuntos
Adenoviridae , Anticorpos Antivirais/sangue , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Ovarianas/terapia , Adenoviridae/genética , Adenoviridae/fisiologia , Idoso , Idoso de 80 Anos ou mais , Ascite/virologia , Antígeno Ca-125/sangue , Calafrios/virologia , Progressão da Doença , Fadiga/virologia , Feminino , Febre/virologia , Expressão Gênica , Humanos , Dose Máxima Tolerável , Pessoa de Meia-Idade , Náusea/virologia , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/virologia , Tomografia Computadorizada por Raios X , Replicação Viral , Eliminação de Partículas Virais
10.
Viruses ; 15(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38005953

RESUMO

mRNA vaccines have attracted widespread research attention with clear advantages in terms of molecular flexibility, rapid development, and potential for personalization. However, current mRNA vaccine platforms have not been optimized for induction of CD4/CD8 T cell responses. In addition, the mucosal administration of mRNA based on lipid nanoparticle technology faces challenges in clinical translation. In contrast, adenovirus-based vaccines induce strong T cell responses and have been approved for intranasal delivery. To leverage the inherent strengths of both the mRNA and adenovirus platforms, we developed a novel modular adenoviral mRNA delivery platform based on Tag/Catcher bioconjugation. Specifically, we engineered adenoviral vectors integrating Tag/Catcher proteins at specific locales on the Ad capsid proteins, allowing us to anchor mRNA to the surface of engineered Ad viruses. In proof-of-concept studies, the Ad-mRNA platform successfully mediated mRNA delivery and could be optimized via the highly flexible modular design of both the Ad-mRNA and protein bioconjugation systems.


Assuntos
Adenoviridae , Vetores Genéticos , Vacinas de mRNA , Adenoviridae/genética , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Vetores Genéticos/genética , Engenharia Genética
11.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205450

RESUMO

We previously described a nasally delivered monovalent adenoviral-vectored SARS-CoV-2 vaccine (ChAd-SARS-CoV-2-S, targeting Wuhan-1 spike [S]; iNCOVACC®) that is currently used in India as a primary or booster immunization. Here, we updated the mucosal vaccine for Omicron variants by creating ChAd-SARS-CoV-2-BA.5-S, which encodes for a pre-fusion and surface-stabilized S protein of the BA.5 strain, and then tested monovalent and bivalent vaccines for efficacy against circulating variants including BQ.1.1 and XBB.1.5. Whereas monovalent ChAd-vectored vaccines effectively induced systemic and mucosal antibody responses against matched strains, the bivalent ChAd-vectored vaccine elicited greater breadth. However, serum neutralizing antibody responses induced by both monovalent and bivalent vaccines were poor against the antigenically distant XBB.1.5 Omicron strain and did not protect in passive transfer experiments. Nonetheless, nasally delivered bivalent ChAd-vectored vaccines induced robust antibody and spike-specific memory T cell responses in the respiratory mucosa, and conferred protection against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in the upper and lower respiratory tracts of both mice and hamsters. Our data suggest that a nasally delivered bivalent adenoviral-vectored vaccine induces protective mucosal and systemic immunity against historical and emerging SARS-CoV-2 strains without requiring high levels of serum neutralizing antibody.

12.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986823

RESUMO

Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens.

13.
ACS Nano ; 16(7): 10443-10455, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35749339

RESUMO

The capacity to efficiently deliver the gene-editing enzyme complex to target cells is favored over other forms of gene delivery as it offers one-time hit-and-run gene editing, thus improving precision and safety and reducing potential immunogenicity against edited cells in clinical applications. Here we performed a proof-of-mechanism study and demonstrated that a simian adenoviral vector for DNA delivery can be repurposed as a robust intracellular delivery platform for a functional Cas9/guide RNA (gRNA) complex to recipient cells. In this system, the clinically relevant adenovirus was genetically engineered with a plug-and-display technology based on SpyTag003/SpyCatcher003 coupling chemistry. Under physiological conditions, an off-the-shelf mixture of viral vector with SpyTag003 incorporated into surface capsid proteins and Cas9 fused with SpyCatcher003 led to a rapid titration reaction yielding adenovirus carrying Cas9SpyCatcher003 on the virus surface. The Cas9 fusion protein-conjugated viruses in the presence of a reporter gRNA delivered gene-editing functions to cells with an efficiency comparable to that of a commercial CRISPR/Cas9 transfection reagent. Our data fully validate the adenoviral "piggyback" approach to deliver an intracellularly acting enzyme cargo and, thus, warrant the prospect of engineering tissue-targeted adenovirus carrying Cas9/gRNA for in vivo gene editing.


Assuntos
Edição de Genes , RNA Guia de Cinetoplastídeos , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Sistemas CRISPR-Cas/genética , Adenoviridae/genética , Adenoviridae/metabolismo , Capsídeo/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo
14.
Heliyon ; 7(2): e06210, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33615011

RESUMO

Osteosarcoma is one among the most common neoplasms in dogs. Current treatments show limited efficacy and fail to prevent metastasis. Conditionally replicative adenoviruses (CRAd) replicate exclusively in targeted tumor cells and release new virus particles to infect additional cells. We proposed that OC-CAVE1 (CAV2 with the E1A promoter replaced with the osteocalcin promotor) may also enhance existing immunity against tumors by overcoming immune tolerance via exposure of new epitopes and cytokine signaling. Eleven client-owned dogs with spontaneously occurring osteosarcomas were enrolled in a pilot study. All dogs were injected with OC-CAVE1 following amputation of the affected limb or limb-sparing surgery. Dogs were monitored for viremia and viral shedding. There was minimal virus shedding in urine and feces by the 6th day and no virus was present in blood after 4 weeks. CAV-2 antibody-titers increased in all of the patients, post-CRAd injection. Immunological assays were performed to monitor 1) humoral response against tumors, 2) levels of circulatory CD11c + cells, 3) levels of regulatory T cells, and 4) cytotoxic activity of tumor specific T cells against autologous tumor cells between pre-CRAd administration and 4 weeks post-CRAd administration samples. Administration of the CRAd OC-CAVE1 resulted in alteration of some immune response parameters but did not appear to result in increased survival duration. However, 2 dogs in the study achieved survival times in excess of 1 year. Weak replication of OC-CAVE1 in metastatic cells and delay of chemotherapy following CRAd treatment may contribute to the lack of immune response and improvement in survival time of the clinical patients.

15.
J Control Release ; 334: 106-113, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33872627

RESUMO

For the developing field of gene therapy the successful address of the basic requirement effective gene delivery has remained a critical barrier. In this regard, the "Holy Grail" vector envisioned by the field's pioneers embodied the ability to achieve efficient and specific in vivo gene delivery. Functional linkage of antibody selectivity with viral vector efficiency represented a logical strategy but has been elusive. Here we have addressed this key issue by developing the technical means to pair antibody-based targeting with adenoviral-mediated gene transfer. Our novel method allows efficient and specific gene delivery. Importantly, our studies validated the achievement of this key vectorology mandate in the context of in vivo gene delivery. Vectors capable of effective in vivo delivery embody the potential to dramatically expand the range of successful gene therapy cures.


Assuntos
Adenoviridae , Anticorpos de Domínio Único , Adenoviridae/genética , Técnicas de Transferência de Genes , Engenharia Genética , Terapia Genética , Vetores Genéticos , Anticorpos de Domínio Único/genética
16.
Mol Cancer Ther ; 19(3): 966-971, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31907220

RESUMO

The application of cancer gene therapy has heretofore been restricted to local, or locoregional, neoplastic disease contexts. This is owing to the lack of gene transfer vectors, which embody the requisite target cell selectivity in vivo required for metastatic disease applications. To this end, we have explored novel vector engineering paradigms to adapt adenovirus for this purpose. Our novel strategy exploits three distinct targeting modalities that operate in functional synergy. Transcriptional targeting is achieved via the hROBO4 promoter, which restricts transgene expression to proliferative vascular endothelium. Viral binding is modified by incorporation of an RGD4C peptide in the HI loop of the fiber knob for recognition of cellular integrins. Liver sequestration is mitigated by ablation of factor X binding to the major capsid protein hexon by a serotype swap approach. The combination of these technologies into the context of a single-vector agent represents a highly original approach. Studies in a murine model of disseminated cancer validated the in vivo target cell selectivity of our vector agent. Of note, clear gains in therapeutic index accrued these vector modifications. Whereas there is universal recognition of the value of vector targeting, very few reports have validated its direct utility in the context of cancer gene therapy. In this regard, our article validates the direct gains that may accrue these methods in the stringent delivery context of disseminated neoplastic disease. Efforts to improve vector targeting thus represent a critical direction to fully realize the promise of cancer gene therapy.


Assuntos
Adenoviridae/genética , Biomarcadores Tumorais/genética , Proteínas do Capsídeo/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Neoplasias Renais/terapia , Neovascularização Patológica/terapia , Animais , Apoptose , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/genética , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Regiões Promotoras Genéticas , Receptores de Superfície Celular/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cell Rep ; 28(10): 2634-2646.e4, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484074

RESUMO

The teratogenic potential of Zika virus (ZIKV) has made the development of an effective vaccine a global health priority. Here, we generate two gorilla adenovirus-based ZIKV vaccines that encode for pre-membrane (prM) and envelope (E) proteins (GAd-Zvp) or prM and the ectodomain of E protein (GAd-Eecto). Both vaccines induce humoral and cell-mediated immune responses and prevent lethality after ZIKV challenge in mice. Protection is antibody dependent, CD8+ T cell independent, and for GAd-Eecto requires the complement component C1q. Immunization of GAd-Zvp induces antibodies against a key neutralizing epitope on domain III of E protein and confers durable protection as evidenced by memory B and long-lived plasma cell responses and challenge studies 9 months later. In two models of ZIKV infection during pregnancy, GAd-Zvp prevents maternal-to-fetal transmission. The gorilla adenovirus-based vaccine platform encoding full-length prM and E genes is a promising candidate for preventing congenital ZIKV syndrome and possibly infection by other flaviviruses.


Assuntos
Adenoviridae/imunologia , Gorilla gorilla/virologia , Imunidade , Zika virus/imunologia , Animais , Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Feminino , Feto/patologia , Feto/virologia , Humanos , Memória Imunológica , Camundongos Endogâmicos C57BL , Gravidez , Linfócitos T/imunologia , Vacinas Virais/imunologia
18.
J Ovarian Res ; 12(1): 18, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30767772

RESUMO

BACKGROUND: Virotherapy represents a promising approach for ovarian cancer. In this regard, conditionally replicative adenovirus (CRAd) has been translated to the context of human clinical trials. Advanced design of CRAds has sought to exploit their capacity to induce anti-tumor immunization by configuring immunoregulatory molecule within the CRAd genome. Unfortunately, employed murine xenograft models do not allow full analysis of the immunologic activity linked to CRAd replication. RESULTS: We developed CRAds based on the Ad5/3-Delta24 design encoding cytokines. Whereas the encoded cytokines did not impact adversely CRAd-induced oncolysis in vitro, no gain in anti-tumor activity was noted in immune-incompetent murine models with human ovarian cancer xenografts. On this basis, we explored the potential utility of the murine syngeneic immunocompetent ID8 ovarian cancer model. Of note, the ID8 murine ovarian cancer cell lines exhibited CRAd-mediated cytolysis. The use of this model now enables the rational design of oncolytic agents to achieve anti-tumor immunotherapy. CONCLUSIONS: Limits of widely employed murine xenograft models of ovarian cancer limit their utility for design and study of armed CRAd virotherapy agents. The ID8 model exhibited CRAd-induced oncolysis. This feature predicate its potential utility for the study of CRAd-based virotherapy agents.


Assuntos
Adenoviridae/genética , Modelos Animais de Doenças , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Neoplasias Ovarianas/terapia , Adenoviridae/fisiologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Vetores Genéticos , Humanos , Camundongos , Vírus Oncolíticos/fisiologia , Neoplasias Ovarianas/virologia , Proteínas Supressoras de Tumor/genética , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancer Gene Ther ; 25(1-2): 27-38, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29242639

RESUMO

Adenoviral (Ad) vector vaccines represent one of the most promising modern vaccine platforms, and Ad vector vaccines are currently being investigated in human clinical trials for infectious disease and cancer. Our studies have shown that specific targeting of adenovirus to dendritic cells dramatically enhanced vaccine efficacy. However, this was achieved using a molecular adapter, thereby necessitating a two component vector approach. To address the mandates of clinical translation of our strategy, we here sought to accomplish the goal of DC targeting with a single-component adenovirus vector approach. To redirect the specificity of Ad vector vaccines, we replaced the Ad fiber knob with fiber-fibritin chimeras fused to DC1.8, a single-domain antibody (sdAb) specific for murine immature DC. We engineered a fiber-fibritin-sdAb chimeric molecule using the coding sequence for DC1.8, and then replaced the native Ad5 fiber knob sequence by homologous recombination. The resulting Ad5 virus, Ad5FF1.8, expresses the chimeric fiber-fibritin sdAb chimera. Infection with Ad5FF1.8 dramatically enhances transgene expression in DC2.4 dendritic cells compared with infection with native Ad5. Ad5FF1.8 infection of bone marrow-derived DC demonstrates that Ad5FF1.8 selectively infects immature DC consistent with the known specificity of DC1.8. Thus, sdAb can be used to selectively redirect the tropism of Ad5 vector vaccines, providing the opportunity to engineer Ad vector vaccines that are specifically targeted to DC, or specific DC subsets.


Assuntos
Adenoviridae , Células Dendríticas/imunologia , Vetores Genéticos , Vacinas , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Camundongos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Vacinas/genética , Vacinas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
20.
PLoS One ; 12(12): e0190125, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29267342

RESUMO

Clinical application of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based cancer therapeutics has not reached optimal potencies in part due to inadequate drug stability and inefficiencies in cancer-selective drug delivery. As such, innovative strategies regarding drug design and delivery are of utmost importance to achieve improved treatment results. With our current study, we aimed at exploring the groundwork for a two-stage targeting concept, which is based on the intrinsic tumor homing capacity of mesenchymal stem cells (MSCs) as cellular drug factories for the in situ production of our newly designed and biomarker-targeted TRAIL-based TR3 therapeutics. Since MSCs are primary cells, capable in vitro of only a limited number of cell divisions, identification of suitable strategies for their efficient genetic manipulation is of critical importance. We chose adenoviral (Ad) vectors as a transduction vehicle due to its ability to infect dividing and non-dividing cells and because of their limited restrictions regarding the packaging capacity of their genetic payload. In order to enhance the transduction efficacy of MSCs using Ad5 wild-type-based vectors, we tested a variety of fiber knob modifications on a panel of patient-derived MSC lines established from adipose tissue. We identified Ad5pK7, an Ad5 vector containing a polylysine fiber knob modification, exhibiting the highest transduction rates across a panel of 16 patient-derived MSC lines. We further demonstrated that MSCs could be efficiently transduced with an Ad5pK7 vector containing membrane-anchored and secreted TR3 expression units, including the MUC16 (CA125)-targeted variant Meso64-TR3. In both in vitro and in vivo experiments, MSC-derived Meso64-TR3 was far more potent on MUC16-expressing ovarian cancer compared to its non-targeted TR3 counterpart. Our findings thus provide the foundation to initiate further preclinical investigations on MSC-mediated treatment options in ovarian cancer using biomarker-targeted TR3-based biologics.


Assuntos
Adenoviridae/genética , Produtos Biológicos/uso terapêutico , Células-Tronco Mesenquimais/citologia , Neoplasias Ovarianas/terapia , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Transdução Genética , Feminino , Humanos , Neoplasias Ovarianas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA