Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 13(1): 270-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23646726

RESUMO

The Mn0.5Zn0.5Fe2O4 nanoparticles has been synthesized using citrate-gel-precursor method. The direct mixing of nitrates and acetates yields homogeneous nanoparticles. Phase formation and crystal structure of the synthesized powder were examined through the X-ray diffraction (XRD). Fourier transform infrared (FTIR) spectra of the sample confirm the spinel structure. The average particle size was determined by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The average particle size is found to be about 13 nm. Superparamagnetic-like nature of the nanoparticles of Mn0.5Zn0.5Fe2O4 has been revealed through various dc and linear and non-linear ac magnetization measurements. However, the nanoparticles do not behave like ideal non-interacting superparamagnets. The magnetic particle size is found to be about 8 nm with saturation magnetization about 18.1 emu/g. The blocking temperature (T(B)) of the nanoparticle assembly is found to be about 150 K as observed from dc and ac magnetization measurements. The frequency dependence of the blocking temperature (T(B)) is found to follow Vogel-Fulcher law. The associated characteristic time tau0 is found to be 10(-5) s. This value is different from that generally found for non-interacting superparamagnetic (SPM) systems (tau0 = 10(-9)-10(-10) s).


Assuntos
Compostos Férricos/química , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestrutura , Campos Eletromagnéticos , Modelos Lineares , Campos Magnéticos , Teste de Materiais , Dinâmica não Linear , Tamanho da Partícula
2.
J Nanosci Nanotechnol ; 11(3): 2743-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21449467

RESUMO

Observation of room temperature ferromagnetism (RTFM) in nano-crystalline Co-incorporated titanium dioxide [Ti(1-x)Co(x)O2(x = 0.05)] thin films prepared by spray pyrolysis technique is reported. While only the anatase phase was detected in as-deposited 5 at.% Co-incorporated TiO2 film, a small amount of rutile phase developed following its vacuum annealing. Besides, no X-ray diffraction peak corresponding to cobalt metal could be detected in any of the two films. SQUID magnetometry of both pristine and Co-doped thin films at room temperature elucidated distinct ferromagnetic behavior in 5 at.% Co-incorporated as-deposited film with saturation moment M(s) approximately 5.6 emu/cm3 which got enhanced up to 11.8 emu/cm3 on subsequent vacuum annealing. From the zero field cooled magnetization measurement we confirmed the absence of Co-metal clusters. The electrical resistivity was found to be greater than 108 omega-cm for the films. Based on the magnetic and electrical measurements the origin of RTFM has been attributed to the bound magnetic polaron (BMP) model.


Assuntos
Cobalto/química , Cristalização/métodos , Magnetismo , Membranas Artificiais , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Titânio/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA