Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Exp Bot ; 75(5): 1331-1346, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37996075

RESUMO

This study describes the seasonal changes in cell-to-cell transport in three selected angiosperm tree species, Acer pseudoplatanus (maple), Fraxinus excelsior (ash), and Populus tremula × tremuloides (poplar), with an emphasis on the living wood component, xylem parenchyma cells (XPCs). We performed anatomical studies, dye loading through the vascular system, measurements of non-structural carbohydrate content, immunocytochemistry, inhibitory assays and quantitative real-time PCR to analyse the transport mechanisms and seasonal variations in wood. The abundance of membrane dye in wood varied seasonally along with seasonally changing tree phenology, cambial activity, and non-structural carbohydrate content. Moreover, dyes internalized in vessel-associated cells and 'trapped' in the endomembrane system are transported farther between other XPCs via plasmodesmata. Finally, various transport mechanisms based on clathrin-mediated and clathrin-independent endocytosis, and membrane transporters, operate in wood, and their involvement is species and/or season dependent. Our study highlights the importance of XPCs in seasonally changing cell-to-cell transport in both ring-porous (ash) and diffuse-porous (maple, poplar) tree species, and demonstrates the involvement of both endocytosis and plasmodesmata in intercellular communication in angiosperm wood.


Assuntos
Magnoliopsida , Populus , Madeira , Estações do Ano , Xilema , Clatrina , Carboidratos
2.
Environ Microbiol ; 22(9): 3754-3771, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32608104

RESUMO

Ectomycorrhizae (ECMs) are a highly context-dependent interactions that are not always beneficial for the plant host, sometimes leading to a decrease in plant growth. However, the molecular status of these plants remains unknown. We studied Populus × canescens microcuttings characterized by impaired growth in response to colonization by a Paxillus involutus strain via integrative proteomics-metabolomics analyses. The analysed strain was characterized by low compatibility and formed only mantles, not a Hartig net, in the majority of root tips. The increased abundance of photosynthetic proteins and foliar carbohydrates co-occurred with signals of intensified resource exchange via the stems of colonized plants. In the roots, intensified C metabolism resulted in the biosynthesis of secondary C compounds unavailable to the fungal partner but also C skeletons necessary to increase insufficient N uptake from the hyphae. The stress response was also detected in colonized plants but was similar to that reported previously during mutualistic ECM interactions. In colonized poplar plants, mechanisms to prevent imbalanced C/N trade-offs were activated. Root metabolism strongly depended on features of the whole plant, especially the foliar C/N budget. However, despite ECM-triggered growth impairment and the foliar nutrient status, the fungal partner was recognized to be a symbiotic partner.


Assuntos
Basidiomycota , Micorrizas , Populus , Metabolômica , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Populus/crescimento & desenvolvimento , Populus/metabolismo , Populus/microbiologia , Proteômica , Simbiose
3.
New Phytol ; 222(4): 1846-1861, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30548617

RESUMO

In trees, dead and living cells of secondary xylem (wood) function collectively, rendering cell-to-cell communication challenging. Water and solutes are transported over long distances from the roots to the above-ground organs via vessels, the main component of wood, and then radially over short distances to the neighboring cells. This enables proper functioning of trees and integrates whole-plant activity. In this study, tracer loading, immunolocalization experiments and inhibitor assays were used to decipher the mechanisms enabling transport in wood of Acer pseudoplatanus (maple), Fraxinus excelsior (ash) and Populus tremula × tremuloides (poplar) trees. We show that tracer uptake from dead water-conducting vessels, elements of the apoplasm, to living vessel-associated cells (VACs) of the xylem parenchyma of the symplasm system proceeds via the endocytic pathway, including clathrin-mediated and clathrin-independent processes. These findings enhance our understanding of the transport pathways in complex wood tissue, providing experimental evidence of the involvement of VACs and endocytosis in radial uptake from vessels.


Assuntos
Endocitose , Madeira/metabolismo , Acer/metabolismo , Transporte Biológico , Brefeldina A/farmacologia , Clatrina/metabolismo , Corantes/metabolismo , Fraxinus/metabolismo , Modelos Biológicos , Feixe Vascular de Plantas/citologia , Populus/metabolismo
4.
Plant Cell Physiol ; 56(12): 2351-67, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26443375

RESUMO

Phosphorylation and dephosphorylation events play an important role in the transmission of the ABA signal. Although SnRK2 [sucrose non-fermenting1-related kinase2] protein kinases and group A protein phosphatase type 2C (PP2C)-type phosphatases constitute the core ABA pathway, mitogen-activated protein kinase (MAPK) pathways are also involved in plant response to ABA. However, little is known about the interplay between MAPKs and PP2Cs or SnRK2 in the regulation of ABA pathways. In this study, an effort was made to elucidate the role of MAP kinase kinase kinase18 (MKKK18) in relation to ABA signaling and response. The MKKK18 knockout lines showed more vigorous root growth, decreased abaxial stomatal index and increased stomatal aperture under normal growth conditions, compared with the control wild-type Columbia line. In addition to transcriptional regulation of the MKKK18 promoter by ABA, we demonstrated using in vitro and in vivo kinase assays that the kinase activity of MKKK18 was regulated by ABA. Analysis of the cellular localization of MKKK18 showed that the active kinase was targeted specifically to the nucleus. Notably, we identified abscisic acid insensitive 1 (ABI1) PP2C as a MKKK18-interacting protein, and demonstrated that ABI1 inhibited its activity. Using a cell-free degradation assay, we also established that MKKK18 was unstable and was degraded by the proteasome pathway. The rate of MKKK18 degradation was delayed in the ABI1 knockout line. Overall, we provide evidence that ABI1 regulates the activity and promotes proteasomal degradation of MKKK18.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , MAP Quinase Quinase Quinases/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ubiquitinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Germinação/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Proteína Fosfatase 2C , Transporte Proteico/efeitos dos fármacos , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Frações Subcelulares/metabolismo , Nicotiana
5.
J Exp Bot ; 65(12): 3263-76, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24821953

RESUMO

Phototropins are plasma membrane-localized UVA/blue light photoreceptors which mediate phototropism, inhibition of primary hypocotyl elongation, leaf positioning, chloroplast movements, and stomatal opening. Blue light irradiation activates the C-terminal serine/threonine kinase domain of phototropin which autophosphorylates the receptor. Arabidopsis thaliana encodes two phototropins, phot1 and phot2. In response to blue light, phot1 moves from the plasma membrane into the cytosol and phot2 translocates to the Golgi complex. In this study the molecular mechanism and route of blue-light-induced phot2 trafficking are demonstrated. It is shown that Atphot2 behaves in a similar manner when expressed transiently under 35S or its native promoter. The phot2 kinase domain but not blue-light-mediated autophosphorylation is required for the receptor translocation. Using co-localization and western blotting, the receptor was shown to move from the cytoplasm to the Golgi complex, and then to the post-Golgi structures. The results were confirmed by brefeldin A (an inhibitor of the secretory pathway) which disrupted phot2 trafficking. An association was observed between phot2 and the light chain2 of clathrin via bimolecular fluorescence complementation. The fluorescence was observed at the plasma membrane. The results were confirmed using co-immunoprecipitation. However, tyrphostin23 (an inhibitor of clathrin-mediated endocytosis) and wortmannin (a suppressor of receptor endocytosis) were not able to block phot2 trafficking, indicating no involvement of receptor endocytosis in the formation of phot2 punctuate structures. Protein turnover studies indicated that the receptor was continuously degraded in both darkness and blue light. The degradation of phot2 proceeded via a transport route different from translocation to the Golgi complex.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Citoplasma/metabolismo , Complexo de Golgi/metabolismo , Luz , Arabidopsis/citologia , Proteínas de Arabidopsis/genética , Imunoprecipitação , Fosforilação , Fosfotransferases/metabolismo , Transporte Proteico/efeitos da radiação
6.
Molecules ; 19(9): 13392-421, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25178062

RESUMO

The aim of the study was to examine cross-talk interactions of soluble sugars (sucrose, glucose and fructose) and infection caused by Fusarium oxysporum f.sp. lupini on the synthesis of genistein in embryo axes of Lupinus luteus L.cv. Juno. Genistein is a free aglycone, highly reactive and with the potential to inhibit fungal infection and development of plant diseases. As signal molecules, sugars strongly stimulated accumulation of isoflavones, including genistein, and the expression of the isoflavonoid biosynthetic genes. Infection significantly enhanced the synthesis of genistein and other isoflavone aglycones in cells of embryo axes of yellow lupine with high endogenous sugar levels. The activity of ß-glucosidase, the enzyme that releases free aglycones from their glucoside bindings, was higher in the infected tissues than in the control ones. At the same time, a very strong generation of the superoxide anion radical was observed in tissues with high sugar contents already in the initial stage of infection. During later stages after inoculation, a strong generation of semiquinone radicals was observed, which level was relatively higher in tissues deficient in sugars than in those with high sugar levels. Observations of actin and tubulin cytoskeletons in cells of infected embryo axes cultured on the medium with sucrose, as well as the medium without sugar, showed significant differences in their organization.


Assuntos
Citoesqueleto/metabolismo , Fusarium/fisiologia , Genisteína/metabolismo , Lupinus/metabolismo , Benzoquinonas/metabolismo , Vias Biossintéticas , Frutose/metabolismo , Expressão Gênica , Glucose/metabolismo , Interações Hospedeiro-Patógeno , Lupinus/citologia , Lupinus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Superóxidos/metabolismo , Tubulina (Proteína)/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
7.
Bio Protoc ; 13(18): e4824, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37753471

RESUMO

Here, we present an approach combining fluorescence in situ hybridization (FISH) and immunolabeling for localization of pri-miRNAs in isolated nuclei of A. thaliana. The presented method utilizes specific DNA oligonucleotide probes, modified by addition of digoxigenin-labeled deoxynucleotides to its 3' hydroxyl terminus by terminal deoxynucleotidyl transferase (TdT). The probes are then detected by immunolabeling of digoxigenin (DIG) using specific fluorescent-labeled antibodies to visualize hybridized probes. Recently, we have applied this method to localize pri-miRNA156a, pri-miRNA163, pri-miRNA393a, and pri-miRNA414 in the nuclei isolated from leaves of 4-week-old A. thaliana. The present approach can be easily implemented to analyze nuclear distribution of diverse RNA classes, including mRNAs and pri-miRNAs in isolated fixed cells or nuclei from plant.

8.
Nat Plants ; 8(4): 402-418, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35449404

RESUMO

In most organisms, the maturation of nascent RNAs is coupled to transcription. Unlike in animals, the RNA polymerase II (RNAPII) transcribes microRNA genes (MIRNAs) as long and structurally variable pri-miRNAs in plants. Current evidence suggests that the miRNA biogenesis complex assembly initiates early during the transcription of pri-miRNAs in plants. However, it is unknown whether miRNA processing occurs co-transcriptionally. Here, we used native elongating transcript sequencing data and imaging techniques to demonstrate that plant miRNA biogenesis occurs coupled to transcription. We found that the entire biogenesis occurs co-transcriptionally for pri-miRNAs processed from the loop of the hairpin but requires a second nucleoplasmic step for those processed from the base. Furthermore, we found that co- and post-transcriptional miRNA processing mechanisms co-exist for most miRNAs in a dynamic balance. Notably, we discovered that R-loops, formed near the transcription start site region of MIRNAs, promote co-transcriptional pri-miRNA processing. Furthermore, our results suggest the neofunctionalization of co-transcriptionally processed miRNAs, boosting countless regulatory scenarios.


Assuntos
MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Plantas/genética , Estruturas R-Loop , RNA Polimerase II/genética , Processamento Pós-Transcricional do RNA
9.
Cells ; 9(4)2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326656

RESUMO

Ethylene is an important plant hormone that controls growth, development, aging and stress responses. The rate-limiting enzymes in ethylene biosynthesis, the 1-aminocyclopropane-1-carboxylate synthases (ACSs), are strictly regulated at many levels, including posttranslational control of protein half-life. Reversible phosphorylation/dephosphorylation events play a pivotal role as signals for ubiquitin-dependent degradation. We showed previously that ABI1, a group A protein phosphatase type 2C (PP2C) and a key negative regulator of abscisic acid signaling regulates type I ACS stability. Here we provide evidence that ABI1 also contributes to the regulation of ethylene biosynthesis via ACS7, a type III ACS without known regulatory domains. Using various approaches, we show that ACS7 interacts with ABI1, ABI2 and HAB1. We use molecular modeling to predict the amino acid residues involved in ABI1/ACS7 complex formation and confirm these predictions by mcBiFC-FRET-FLIM analysis. Using a cell-free degradation assay, we show that proteasomal degradation of ACS7 is delayed in protein extracts prepared from PP2C type A knockout plants, compared to a wild-type extract. This study therefore shows that ACS7 undergoes complex regulation governed by ABI1, ABI2 and HAB1. Furthermore, this suggests that ACS7, together with PP2Cs, plays an essential role in maintaining appropriate levels of ethylene in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Liases/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas de Arabidopsis/química , Núcleo Celular/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Etilenos/biossíntese , Leupeptinas/farmacologia , Liases/química , Modelos Biológicos , Fosfoproteínas Fosfatases/química , Ligação Proteica/efeitos dos fármacos
10.
Front Plant Sci ; 10: 1419, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781142

RESUMO

Regulation of gene expression, as determined by the genetics of the tree species, is a major factor in determining wood quality. Therefore, the identification of genes that play a role in xylogenesis is extremely important for understanding the mechanisms shaping the plant phenotype. Efforts to develop new varieties characterized by higher yield and better wood quality will greatly benefit from recognizing and understanding the complex transcriptional network underlying wood development. The present study provides a detailed comparative description of the changes that occur in genes transcription and the biosynthesis of cell-wall-related compounds during xylogenesis in Populus trichocarpa pioneer roots and stems. Even though results of microarray analysis indicated that only approximately 10% of the differentially expressed genes were common to both organs, many fundamental mechanisms were similar; e.g. the pattern of expression of genes involved in the biosynthesis of cell wall proteins, polysaccharides, and lignins. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) shows that the composition of monosaccharides was also very similar, with an increasing amount of xylose building secondary cell wall hemicellulose and pectins, especially in the stems. While hemicellulose degradation was typical for stems, possibly due to the intensive level of cell wall lignification. Notably, the main component of lignins in roots were guiacyl units, while syringyl units were dominant in stems, where fibers are especially needed for support. Our study is the first comprehensive analysis, at the structural and molecular level, of xylogenesis in under- and aboveground tree parts, and clearly reveals the great complexity of molecular mechanisms underlying cell wall formation and modification during xylogenesis in different plant organs.

11.
Acta Biochim Pol ; 63(4): 693-699, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27921095

RESUMO

Transport and localized translation of mRNA is crucial for the proper spatiotemporal organization of proteins within cells. Distribution of RNAs to subcellular domains has recently emerged as a major mechanism for establishing functionally distinct compartments and structures in the cells. There is an emerging evidence that active transport of mRNA involves cytoskeleton and membrane trafficking pathways in fungi, plants and animals, suggesting that it is a common phenomenon among eukaryotes. The important highlights are that the RNA-binding proteins recognize the cargo mRNA and that RNPs are actively transported on the cytoskeletal tracks or co-transported with membranous compartments, such as the endoplasmic reticulum and endosomes. The interest of scientists has expanded over the past years in response to the discoveries that RNA can be exported from cells to play a role in the intercellular communication. In this review, we will focus on characterization of the RNA transport both, within a cell and between cells, and on the currently proposed mechanisms for RNA targeting.


Assuntos
Transporte de RNA , RNA Mensageiro/metabolismo , Animais , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Microtúbulos/metabolismo
12.
J Proteomics ; 120: 158-68, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25805245

RESUMO

Nitric oxide causes numerous protein modifications including nitration of tyrosine residues. This modification, though one of the greatest biological importance, is poorly recognized in plants and is usually associated with stress conditions. In this study we analyzed nitrotyrosines from suspension cultures of Arabidopsis thaliana and Nicotiana tabacum, treated with NO modulators and exposed to osmotic stress, as well as of BY2 cells long-term adapted to osmotic stress conditions. Using confocal microscopy, we showed that the cell wall area is one of the compartments most enriched in nitrotyrosines within a plant cell. Subsequently, we analyzed nitration of ionically-bound cell-wall proteins and identified selected proteins with MALDI-TOF spectrometry. Proteomic analysis indicated that there was no significant increase in the amount of nitrated proteins under the influence of NO modulators, among them 3-morpholinosydnonimine (SIN-1), considered a donor of nitrating agent, peroxynitrite. Moreover, osmotic stress conditions did not increase the level of nitration in cell wall proteins isolated from suspension cells, and in cultures long-term adapted to stress conditions; that level was even reduced in comparison with control samples. Among identified nitrotyrosine-containing proteins dominated the ones associated with carbon circulation as well as the numerous proteins responding to stress conditions, mainly peroxidases. BIOLOGICAL SIGNIFICANCE: High concentrations of nitric oxide found in the cell wall and the ability to produce large amounts of ROS make the apoplast a site highly enriched in nitrotyrosines, as presented in this paper. Analysis of ionically bound fraction of the cell wall proteins indicating generally unchanged amounts of nitrotyrosines under influence of NO modulators and osmotic stress, is noticeably different from literature data concerning, however, the total plant proteins analysis. This observation is supplemented by further nitroproteome analysis, for cells long-term adapted to stressful conditions, and results showing that such conditions did not always cause an increase in nitrotyrosine content. These findings may be interpreted as characteristic features of apoplastic protein nitration.


Assuntos
Apoproteínas/metabolismo , Arabidopsis/metabolismo , Nicotiana/metabolismo , Óxido Nítrico/metabolismo , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Tirosina/análogos & derivados , Tirosina/metabolismo
13.
Mol Plant ; 7(6): 960-976, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24637173

RESUMO

Ethylene plays a crucial role in various biological processes and therefore its biosynthesis is strictly regulated by multiple mechanisms. Posttranslational regulation, which is pivotal in controlling ethylene biosynthesis, impacts 1-aminocyclopropane 1-carboxylate synthase (ACS) protein stability via the complex interplay of specific factors. Here, we show that the Arabidopsis thaliana protein phosphatase type 2C, ABI1, a negative regulator of abscisic acid signaling, is involved in the regulation of ethylene biosynthesis under oxidative stress conditions. We found that ABI1 interacts with ACS6 and dephosphorylates its C-terminal fragment, a target of the stress-responsive mitogen-activated protein kinase, MPK6. In addition, ABI1 controls MPK6 activity directly and by this means also affects the ACS6 phosphorylation level. Consistently with this, ozone-induced ethylene production was significantly higher in an ABI1 knockout strain (abi1td) than in wild-type plants. Importantly, an increase in stress-induced ethylene production in the abi1td mutant was compensated by a higher ascorbate redox state and elevated antioxidant activities. Overall, the results of this study provide evidence that ABI1 restricts ethylene synthesis by affecting the activity of ACS6. The ABI1 contribution to stress phenotype underpins its role in the interplay between the abscisic acid (ABA) and ethylene signaling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Etilenos/biossíntese , Liases/metabolismo , Ozônio , Fosfoproteínas Fosfatases/metabolismo , Arabidopsis , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ligação Proteica , Proteína Fosfatase 2C , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA