Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 157(4): 882-896, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24813611

RESUMO

Mitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA-deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD(+)-SIRT1-PGC-1α axis triggered by hyperactivation of the DNA damage sensor PARP-1. This phenotype is rescued by PARP-1 inhibition or by supplementation with NAD(+) precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a nuclear-mitochondrial crosstalk that is critical for the maintenance of mitochondrial health.


Assuntos
Mitofagia , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuína 1/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Xeroderma Pigmentoso/fisiopatologia , Envelhecimento , Animais , Apoptose , Autofagia , Caenorhabditis elegans , Linhagem Celular , Humanos , Canais Iônicos/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas Quinases/metabolismo , Ratos , Proteína Desacopladora 2 , Xeroderma Pigmentoso/metabolismo
2.
PLoS Genet ; 15(9): e1008338, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525188

RESUMO

Animal development requires the execution of specific transcriptional programs in different sets of cells to build tissues and functional organs. Transcripts are exported from the nucleus to the cytoplasm where they are translated into proteins that, ultimately, carry out the cellular functions. Here we show that in Caenorhabditis elegans, reduction of mRNA export strongly affects epithelial morphogenesis and germline proliferation while other tissues remain relatively unaffected. Epithelialization and gamete formation demand a large number of transcripts in the cytoplasm for the duration of these processes. In addition, our findings highlight the existence of a regulatory feedback mechanism that activates gene expression in response to low levels of cytoplasmic mRNA. We expand the genetic characterization of nuclear export factor NXF-1 to other members of the mRNA export pathway to model mRNA export and recycling of NXF-1 back to the nucleus. Our model explains how mutations in genes involved in general processes, such as mRNA export, may result in tissue-specific developmental phenotypes.


Assuntos
Especificidade de Órgãos/genética , Transporte de RNA/fisiologia , RNA Mensageiro/fisiologia , Transporte Ativo do Núcleo Celular/genética , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/genética , Citoplasma/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Transporte de RNA/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
3.
EMBO Rep ; 19(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30366941

RESUMO

Interventions that promote healthy aging are typically associated with increased stress resistance. Paradoxically, reducing the activity of core biological processes such as mitochondrial or insulin metabolism promotes the expression of adaptive responses, which in turn increase animal longevity and resistance to stress. In this study, we investigated the relation between the extended Caenorhabditis elegans lifespan elicited by reduction in mitochondrial functionality and resistance to genotoxic stress. We find that reducing mitochondrial activity during development confers germline resistance to DNA damage-induced cell cycle arrest and apoptosis in a cell-non-autonomous manner. We identified the C. elegans homologs of the BRCA1/BARD1 tumor suppressor genes, brc-1/brd-1, as mediators of the anti-apoptotic effect but dispensable for lifespan extension upon mitochondrial stress. Unexpectedly, while reduced mitochondrial activity only in the soma was not sufficient to promote longevity, its reduction only in the germline or in germline-less strains still prolonged lifespan. Thus, in animals with partial reduction in mitochondrial functionality, the mechanisms activated during development to safeguard the germline against genotoxic stress are uncoupled from those required for somatic robustness and animal longevity.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Longevidade , Mitocôndrias/metabolismo , Estresse Fisiológico , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proliferação de Células , Dano ao DNA , Reparo do DNA , Células Germinativas/citologia , Mitose
4.
Proc Natl Acad Sci U S A ; 113(44): 12502-12507, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791127

RESUMO

Cockayne syndrome is a neurodegenerative accelerated aging disorder caused by mutations in the CSA or CSB genes. Although the pathogenesis of Cockayne syndrome has remained elusive, recent work implicates mitochondrial dysfunction in the disease progression. Here, we present evidence that loss of CSA or CSB in a neuroblastoma cell line converges on mitochondrial dysfunction caused by defects in ribosomal DNA transcription and activation of the DNA damage sensor poly-ADP ribose polymerase 1 (PARP1). Indeed, inhibition of ribosomal DNA transcription leads to mitochondrial dysfunction in a number of cell lines. Furthermore, machine-learning algorithms predict that diseases with defects in ribosomal DNA (rDNA) transcription have mitochondrial dysfunction, and, accordingly, this is found when factors involved in rDNA transcription are knocked down. Mechanistically, loss of CSA or CSB leads to polymerase stalling at non-B DNA in a neuroblastoma cell line, in particular at G-quadruplex structures, and recombinant CSB can melt G-quadruplex structures. Indeed, stabilization of G-quadruplex structures activates PARP1 and leads to accelerated aging in Caenorhabditis elegans In conclusion, this work supports a role for impaired ribosomal DNA transcription in Cockayne syndrome and suggests that transcription-coupled resolution of secondary structures may be a mechanism to repress spurious activation of a DNA damage response.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , DNA de Neoplasias/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Fatores de Transcrição/genética , Transcrição Gênica , Linhagem Celular Tumoral , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , DNA Ribossômico/genética , Quadruplex G , Técnicas de Silenciamento de Genes , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Fatores de Transcrição/metabolismo
5.
Nucleic Acids Res ; 41(10): 5368-81, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23580547

RESUMO

Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Reparo do DNA , Proteoma , Transcriptoma , Proteína de Xeroderma Pigmentoso Grupo A/genética , Animais , Antioxidantes/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , DNA Glicosilases/genética , Endonucleases/genética , Mutação , Purinas/metabolismo , Proteínas Ubiquitinadas/metabolismo
6.
J Proteome Res ; 11(8): 4277-88, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22757771

RESUMO

The nematode Caenorhabditis elegans is an organism most recognized for forward and reverse genetic and functional genomic approaches. Proteomic analyses of DNA damage-induced apoptosis have not been shown because of a limited number of cells undergoing apoptosis. We applied mass spectrometry-based quantitative proteomics to evaluate protein changes induced by ionizing radiation (IR) in isolated C. elegans germlines. For this purpose, we used isobaric peptide termini labeling (IPTL) combined with the data analysis tool IsobariQ, which utilizes MS/MS spectra for relative quantification of peak pairs formed during fragmentation. Using stringent statistical critera, we identified 48 proteins to be significantly up- or down-regulated, most of which are part of a highly interconnected protein-protein interaction network dominated by proteins involved in translational control. RNA-mediated depletion of a selection of the IR-regulated proteins revealed that the conserved CAR-1/CGH-1/CEY-3 germline RNP complex acts as a novel negative regulator of DNA-damage induced apoptosis. Finally, a central role of nucleolar proteins in orchestrating these responses was confirmed as the H/ACA snRNP protein GAR-1 was required for IR-induced apoptosis in the C. elegans germline.


Assuntos
Apoptose/efeitos da radiação , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteoma/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/efeitos da radiação , Proteínas de Caenorhabditis elegans/genética , Dano ao DNA , Reparo do DNA , Regulação da Expressão Gênica/efeitos da radiação , Dados de Sequência Molecular , Mapas de Interação de Proteínas , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética , Coloração e Rotulagem , Espectrometria de Massas em Tandem
7.
Cell Rep ; 36(10): 109668, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496255

RESUMO

Aging, genomic stress, and mitochondrial dysfunction are risk factors for neurodegenerative pathologies, such as Parkinson disease (PD). Although genomic instability is associated with aging and mitochondrial impairment, the underlying mechanisms are poorly understood. Here, we show that base excision repair generates genomic stress, promoting age-related neurodegeneration in a Caenorhabditis elegans PD model. A physiological level of NTH-1 DNA glycosylase mediates mitochondrial and nuclear genomic instability, which promote degeneration of dopaminergic neurons in older nematodes. Conversely, NTH-1 deficiency protects against α-synuclein-induced neurotoxicity, maintaining neuronal function with age. This apparent paradox is caused by modulation of mitochondrial transcription in NTH-1-deficient cells, and this modulation activates LMD-3, JNK-1, and SKN-1 and induces mitohormesis. The dependance of neuroprotection on mitochondrial transcription highlights the integration of BER and transcription regulation during physiological aging. Finally, whole-exome sequencing of genomic DNA from patients with idiopathic PD suggests that base excision repair might modulate susceptibility to PD in humans.


Assuntos
Envelhecimento , Reparo do DNA/fisiologia , DNA de Cadeia Simples/metabolismo , Doença de Parkinson/patologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , Neurônios Dopaminérgicos/metabolismo , Endonucleases/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Doença de Parkinson/genética
8.
Nat Commun ; 10(1): 5284, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754102

RESUMO

Metabolic dysfunction is a primary feature of Werner syndrome (WS), a human premature aging disease caused by mutations in the gene encoding the Werner (WRN) DNA helicase. WS patients exhibit severe metabolic phenotypes, but the underlying mechanisms are not understood, and whether the metabolic deficit can be targeted for therapeutic intervention has not been determined. Here we report impaired mitophagy and depletion of NAD+, a fundamental ubiquitous molecule, in WS patient samples and WS invertebrate models. WRN regulates transcription of a key NAD+ biosynthetic enzyme nicotinamide nucleotide adenylyltransferase 1 (NMNAT1). NAD+ repletion restores NAD+ metabolic profiles and improves mitochondrial quality through DCT-1 and ULK-1-dependent mitophagy. At the organismal level, NAD+ repletion remarkably extends lifespan and delays accelerated aging, including stem cell dysfunction, in Caenorhabditis elegans and Drosophila melanogaster models of WS. Our findings suggest that accelerated aging in WS is mediated by impaired mitochondrial function and mitophagy, and that bolstering cellular NAD+ levels counteracts WS phenotypes.


Assuntos
Senilidade Prematura/metabolismo , Mitofagia , NAD/metabolismo , Helicase da Síndrome de Werner/metabolismo , Síndrome de Werner/metabolismo , Senilidade Prematura/genética , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Síndrome de Werner/genética , Helicase da Síndrome de Werner/genética
10.
DNA Repair (Amst) ; 61: 46-55, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29202295

RESUMO

Oxidation of DNA bases, an inevitable consequence of oxidative stress, requires the base excision repair (BER) pathway for repair. Caenorhabditis elegans is a well-established model to study phenotypic consequences and cellular responses to oxidative stress. To better understand how BER affects phenotypes associated with oxidative stress, we characterised the C. elegans nth-1 mutant, which lack the only DNA glycosylase dedicated to repair of oxidative DNA base damage, the NTH-1 DNA glycosylase. We show that nth-1 mutants have mitochondrial dysfunction characterised by lower mitochondrial DNA copy number, reduced mitochondrial membrane potential, and increased steady-state levels of reactive oxygen species. Consistently, nth-1 mutants express markers of chronic oxidative stress with high basal phosphorylation of MAP-kinases (MAPK) but further activation of MAPK in response to the superoxide generator paraquat is attenuated. Surprisingly, nth-1 mutants also failed to induce apoptosis in response to paraquat. The ability to induce apoptosis in response to paraquat was regained when basal MAPK activation was restored to wild type levels. In conclusion, the failure of nth-1 mutants to induce apoptosis in response to paraquat is not a direct effect of the DNA repair deficiency but an indirect consequence of the compensatory cellular stress response that includes MAPK activation.


Assuntos
Apoptose/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , DNA Glicosilases/deficiência , Endonucleases/deficiência , Células Germinativas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Caenorhabditis elegans , Respiração Celular , DNA Mitocondrial , Dosagem de Genes , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
11.
J Vis Exp ; (129)2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29286376

RESUMO

Mitochondria are the powerhouses of cells and produce cellular energy in the form of ATP. Mitochondrial dysfunction contributes to biological aging and a wide variety of disorders including metabolic diseases, premature aging syndromes, and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Maintenance of mitochondrial health depends on mitochondrial biogenesis and the efficient clearance of dysfunctional mitochondria through mitophagy. Experimental methods to accurately detect autophagy/mitophagy, especially in animal models, have been challenging to develop. Recent progress towards the understanding of the molecular mechanisms of mitophagy has enabled the development of novel mitophagy detection techniques. Here, we introduce several versatile techniques to monitor mitophagy in human cells, Caenorhabditis elegans (e.g., Rosella and DCT-1/ LGG-1 strains), and mice (mt-Keima). A combination of these mitophagy detection techniques, including cross-species evaluation, will improve the accuracy of mitophagy measurements and lead to a better understanding of the role of mitophagy in health and disease.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Animais , Feminino , Humanos , Masculino , Camundongos
12.
Sci Rep ; 7: 46208, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28397803

RESUMO

Aging is a major international concern that brings formidable socioeconomic and healthcare challenges. Small molecules capable of improving the health of older individuals are being explored. Small molecules that enhance cellular stress resistance are a promising avenue to alleviate declines seen in human aging. Tomatidine, a natural compound abundant in unripe tomatoes, inhibits age-related skeletal muscle atrophy in mice. Here we show that tomatidine extends lifespan and healthspan in C. elegans, an animal model of aging which shares many major longevity pathways with mammals. Tomatidine improves many C. elegans behaviors related to healthspan and muscle health, including increased pharyngeal pumping, swimming movement, and reduced percentage of severely damaged muscle cells. Microarray, imaging, and behavioral analyses reveal that tomatidine maintains mitochondrial homeostasis by modulating mitochondrial biogenesis and PINK-1/DCT-1-dependent mitophagy. Mechanistically, tomatidine induces mitochondrial hormesis by mildly inducing ROS production, which in turn activates the SKN-1/Nrf2 pathway and possibly other cellular antioxidant response pathways, followed by increased mitophagy. This mechanism occurs in C. elegans, primary rat neurons, and human cells. Our data suggest that tomatidine may delay some physiological aspects of aging, and points to new approaches for pharmacological interventions for diseases of aging.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a DNA/metabolismo , Longevidade/fisiologia , Mitofagia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tomatina/análogos & derivados , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Músculos/efeitos dos fármacos , Músculos/fisiologia , Biogênese de Organelas , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Tomatina/farmacologia , Transcriptoma/genética
13.
Cell Metab ; 24(4): 566-581, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27732836

RESUMO

Ataxia telangiectasia (A-T) is a rare autosomal recessive disease characterized by progressive neurodegeneration and cerebellar ataxia. A-T is causally linked to defects in ATM, a master regulator of the response to and repair of DNA double-strand breaks. The molecular basis of cerebellar atrophy and neurodegeneration in A-T patients is unclear. Here we report and examine the significance of increased PARylation, low NAD+, and mitochondrial dysfunction in ATM-deficient neurons, mice, and worms. Treatments that replenish intracellular NAD+ reduce the severity of A-T neuropathology, normalize neuromuscular function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD+ also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial dysfunction through nuclear DNA damage-induced nuclear-mitochondrial signaling, and demonstrates that they are important pathophysiological determinants in premature aging of A-T, pointing to therapeutic interventions.


Assuntos
Ataxia Telangiectasia/patologia , Reparo do DNA/efeitos dos fármacos , Saúde , Longevidade/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , NAD/farmacologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Comportamento Animal , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestrutura , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Homeostase/efeitos dos fármacos , Metabolômica , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Ftalazinas/farmacologia , Piperazinas/farmacologia , Proteômica , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
14.
Worm ; 2(4): e27337, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24744987

RESUMO

Oxidative stress promotes human aging and contributes to common neurodegenerative diseases. Endogenous DNA damage induced by oxidative stress is believed to be an important promoter of neurodegenerative diseases. Although a large amount of evidence correlates a reduced DNA repair capacity with aging and neurodegenerative disease, there is little direct evidence of causality. Moreover, the contribution of oxidative DNA damage to the aging process is poorly understood. We have used the nematode Caenorhabditis elegans to study the contribution of oxidative DNA damage and repair to aging. C. elegans is particularly well suited to tackle this problem because it has a minimum complexity DNA repair system, which enables us to circumvent the important limitation presented by the extensive redundancy of DNA repair enzymes in mammals.

15.
Nat Commun ; 4: 2674, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24154628

RESUMO

Cellular responses to DNA damage involve distinct DNA repair pathways, such as mismatch repair (MMR) and base excision repair (BER). Using Caenorhabditis elegans as a model system, we present genetic and molecular evidence of a mechanistic link between processing of DNA damage and activation of autophagy. Here we show that the BER AP endonucleases APN-1 and EXO-3 function in the same pathway as MMR, to elicit DNA-directed toxicity in response to 5-fluorouracil, a mainstay of systemic adjuvant treatment of solid cancers. Immunohistochemical analyses suggest that EXO-3 generates the DNA nicks required for MMR activation. Processing of DNA damage via this pathway, in which both BER and MMR enzymes are required, leads to induction of autophagy in C. elegans and human cells. Hence, our data show that MMR- and AP endonuclease-dependent processing of 5-fluorouracil-induced DNA damage leads to checkpoint activation and induction of autophagy, whose hyperactivation contributes to cell death.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Reparo de Erro de Pareamento de DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Endodesoxirribonucleases/genética , Animais , Antimetabólitos Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endodesoxirribonucleases/metabolismo , Fluoruracila/farmacologia , Regulação da Expressão Gênica , Humanos , Transdução de Sinais
16.
DNA Repair (Amst) ; 10(2): 176-87, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21111690

RESUMO

MutT enzymes prevent DNA damage by hydrolysis of 8-oxodGTP, an oxidized substrate for DNA synthesis and antimutagenic, anticarcinogenic, and antineurodegenerative functions of MutT enzymes are well established. MutT has been found in almost all kingdoms of life, including many bacterial species, yeasts, plants and mammals. However, a Caenorhabditis elegans MutT homologue was not previously identified. Here, we demonstrate that NDX-4 exhibits both hallmarks of a MutT-type enzyme with an ability to hydrolyze 8-oxodGTP and suppress the Escherichia coli mutT mutator phenotype. Moreover, we show that NDX-4 contributes to genomic stability in vivo in C. elegans. Phenotypic analyses of an ndx-4 mutant reveal that loss of NDX-4 leads to upregulation of key stress responsive genes that likely compensate for the in vivo role of NDX-4 in protection against deleterious consequences of oxidative stress. This discovery will enable us to use this extremely robust genetic model for further research into the contribution of oxidative DNA damage to phenotypes associated with oxidative stress.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Reparo do DNA , Instabilidade Genômica , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Dano ao DNA , Nucleotídeos de Desoxiguanina/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Mutação , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Monoéster Fosfórico Hidrolases/genética , Pirofosfatases/genética , Ativação Transcricional
17.
Aging (Albany NY) ; 2(3): 133-59, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20382984

RESUMO

Activation of oxidative stress-responses and downregulation of insulin-like signaling (ILS) is seen in Nucleotide Excision Repair (NER) deficient segmental progeroid mice. Evidence suggests that this is a survival response to persistent transcription-blocking DNA damage, although the relevant lesions have not been identified. Here we show that loss of NTH-1, the only Base Excision Repair (BER) enzyme known to initiate repair of oxidative DNA damage inC. elegans, restores normal lifespan of the short-lived NER deficient xpa-1 mutant. Loss of NTH-1 leads to oxidative stress and global expression profile changes that involve upregulation of genes responding to endogenous stress and downregulation of ILS. A similar, but more extensive, transcriptomic shift is observed in the xpa-1 mutant whereas loss of both NTH-1 and XPA-1 elicits a different profile with downregulation of Aurora-B and Polo-like kinase 1 signaling networks as well as DNA repair and DNA damage response genes. The restoration of normal lifespan and absence oxidative stress responses in nth-1;xpa-1 indicate that BER contributes to generate transcription blocking lesions from oxidative DNA damage. Hence, our data strongly suggests that the DNA lesions relevant for aging are repair intermediates resulting from aberrant or attempted processing by BER of lesions normally repaired by NER.


Assuntos
Envelhecimento/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Reparo do DNA , Endonucleases/metabolismo , Regulação da Expressão Gênica , Estresse Oxidativo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo , Animais , Aurora Quinase B , Aurora Quinases , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/metabolismo , DNA Glicosilases , Endonucleases/genética , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/genética , Quinase 1 Polo-Like
18.
DNA Repair (Amst) ; 9(8): 861-70, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20493785

RESUMO

The nematode Caenorhabditis elegans has been used extensively to study responses to DNA damage. In contrast, little is known about DNA repair in this organism. C. elegans is unusual in that it encodes few DNA glycosylases and the uracil-DNA glycosylase (UDG) encoded by the ung-1 gene is the only known UDG. C. elegans could therefore become a valuable model organism for studies of the genetic interaction networks involving base excision repair (BER). As a first step towards characterization of BER in C. elegans, we show that the UNG-1 protein is an active uracil-DNA glycosylase. We demonstrate that an ung-1 mutant has reduced ability to repair uracil-containing DNA but that an alternative Ugi-inhibited activity is present in ung-1 nuclear extracts. Finally, we demonstrate that ung-1 mutants show altered levels of apoptotic cell corpses formed in response to DNA damaging agents. Increased apoptosis in the ung-1 mutant in response to ionizing radiation (IR) suggests that UNG-1 contributes to repair of IR-induced DNA base damage in vivo. Following treatment with paraquat however, the apoptotic corpse-formation was reduced. Gene expression profiling suggests that this phenotype is a consequence of compensatory transcriptomic shifts that modulate oxidative stress responses in the mutant and not an effect of reduced DNA damage signaling.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Reparo do DNA/fisiologia , Mutação , Paraquat/farmacologia , Uracila-DNA Glicosidase/metabolismo , Animais , Apoptose/efeitos da radiação , Caenorhabditis elegans/genética , Caenorhabditis elegans/efeitos da radiação , Proteínas de Caenorhabditis elegans/genética , Dano ao DNA/efeitos da radiação , Perfilação da Expressão Gênica/métodos , Uracila-DNA Glicosidase/genética
19.
DNA Repair (Amst) ; 9(2): 169-76, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20036200

RESUMO

We previously showed that Caenorhabditis elegans APN-1, the only metazoan apurinic/apyrimidinc (AP) endonuclease belonging to the endonuclease IV family, can functionally rescue the DNA repair defects of Saccharomyces cerevisiae mutants completely lacking AP endonuclease/3'-diesterase activities. While this complementation study provided the first evidence that APN-1 possesses the ability to act on DNA lesions that are processed by AP endonucleases/3'-diesterase activities, no former studies were conducted to examine its biological importance in vivo. Herein, we show that C. elegans knockdown for apn-1 by RNAi displayed phenotypes that are directly linked with a defect in maintaining the integrity of the genome. apn-1(RNAi) animals exhibited a 5-fold increase in the frequency of mutations at a gfp-lacZ reporter and showed sensitivities to DNA damaging agents such as methyl methane sulfonate and hydrogen peroxide that produce AP site lesions and strand breaks with blocked 3'-ends. The apn-1(RNAi) worms also displayed a delay in the division of the P1 blastomere, a defect that is consistent with the accumulation of unrepaired lesions. Longevity was only compromised, if the apn-1(RNAi) animals were challenged with the DNA damaging agents. We showed that apn-1(RNAi) knockdown suppressed formation of apoptotic corpses in the germline caused by an overburden of AP sites generated from uracil DNA glycosylase mediated removal of misincorporated uracil. Finally, we showed that depletion of APN-1 by RNAi partially rescued the lethality resulting from uracil misincorporation, suggesting that APN-1 is an important AP endonuclease for repair of misincorporated uracil.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Endodesoxirribonucleases/metabolismo , Genoma Helmíntico/genética , Instabilidade Genômica/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos da radiação , Blastômeros/citologia , Blastômeros/efeitos dos fármacos , Blastômeros/efeitos da radiação , Caenorhabditis elegans/citologia , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endodesoxirribonucleases/deficiência , Endodesoxirribonucleases/genética , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Genes Reporter , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/efeitos da radiação , Proteínas de Fluorescência Verde/metabolismo , Longevidade/efeitos dos fármacos , Longevidade/efeitos da radiação , Metanossulfonato de Metila/toxicidade , Mutação/genética , Interferência de RNA/efeitos dos fármacos , Raios Ultravioleta , Uracila/metabolismo , beta-Galactosidase/metabolismo , terc-Butil Hidroperóxido/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA