Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 130(1): 151-162, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37968472

RESUMO

BACKGROUND: Aberrant WNT/ß-catenin signaling drives carcinogenesis. Tankyrases poly(ADP-ribosyl)ate and destabilize AXINs, ß-catenin repressors. Tankyrase inhibitors block WNT/ß-catenin signaling and colorectal cancer (CRC) growth. We previously reported that 'short' APC mutations, lacking all seven ß-catenin-binding 20-amino acid repeats (20-AARs), are potential predictive biomarkers for CRC cell sensitivity to tankyrase inhibitors. Meanwhile, 'Long' APC mutations, which possess more than one 20-AAR, do not predict inhibitor-resistant cells. Thus, additional biomarkers are needed to precisely predict the inhibitor sensitivity. METHODS: Using 47 CRC patient-derived cells (PDCs), we examined correlations between the sensitivity to tankyrase inhibitors (G007-LK and RK-582), driver mutations, and the expressions of signaling factors. NOD.CB17-Prkdcscid/J and BALB/c-nu/nu xenograft mice were treated with RK-582. RESULTS: Short APC mutant CRC cells exhibited high/intermediate sensitivities to tankyrase inhibitors in vitro and in vivo. Active ß-catenin levels correlated with inhibitor sensitivity in both short and long APC mutant PDCs. PIK3CA mutations, but not KRAS/BRAF mutations, were more frequent in inhibitor-resistant PDCs. Some wild-type APC PDCs showed inhibitor sensitivity in a ß-catenin-independent manner. CONCLUSIONS: APC/PIK3CA mutations and ß-catenin predict the sensitivity of APC-mutated CRC PDCs to tankyrase inhibitors. These observations may help inform the strategy of patient selection in future clinical trials of tankyrase inhibitors.


Assuntos
Neoplasias Colorretais , Tanquirases , Animais , Camundongos , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Tanquirases/genética , Tanquirases/metabolismo , Linhagem Celular Tumoral , beta Catenina/genética , beta Catenina/metabolismo , Camundongos Endogâmicos NOD , Via de Sinalização Wnt/genética , Biomarcadores , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo
2.
Biochem Biophys Res Commun ; 725: 150255, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897043

RESUMO

Human epidermal growth factor receptor 2 (HER2) aberrations are observed in various cancers. In non-small cell lung cancer, genetic alterations activating HER2, mostly exon 20 insertion mutations, occur in approximately 2-4% of cases. Trastuzumab deruxtecan (T-DXd), a HER2-targeted antibody-drug conjugate has been approved as the first HER2-targeted drug for HER2-mutant lung cancer. However, some cases are not responsive to T-DXd and the primary resistant mechanism remains unclear. In this study, we assessed sensitivity to T-DXd in JFCR-007, a patient-derived HER2-mutant lung cancer cell line. Although JFCR-007 was sensitive to HER2 tyrosine kinase inhibitors, it showed resistance to T-DXd in attachment or spheroid conditions. Accordingly, we established a three-dimensional (3D) layered co-culture model of JFCR-007, where it exhibited a lumen-like structure and became sensitive to T-DXd. In addition, an in-house inhibitor library screening revealed that G007-LK, a tankyrase inhibitor, was effective when combined with T-DXd. G007-LK increased the cytotoxicity of topoisomerase-I inhibitor, DXd, a payload of T-DXd and SN-38. This combined effect was also observed in H2170, an HER2-amplified lung cancer cell line. These results suggest that the proposed 3D co-culture system may help in evaluating the efficacy of T-DXd and may recapitulate the tumor microenvironment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Técnicas de Cocultura , Imunoconjugados , Neoplasias Pulmonares , Receptor ErbB-2 , Trastuzumab , Humanos , Trastuzumab/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , Imunoconjugados/farmacologia , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Éteres de Coroa/farmacologia , Antineoplásicos Imunológicos/farmacologia , Camptotecina/análogos & derivados
3.
Biochem Biophys Res Commun ; 708: 149789, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38513475

RESUMO

The tumor suppressor p53 prevents cancer development by regulating dozens of target genes with diverse biological functions. Although numerous p53 target genes have been identified to date, the dynamics and function of the regulatory network centered on p53 have not yet been fully elucidated. We herein identified inhibitor of DNA-binding/differentiation-3 (ID3) as a direct p53 target gene. p53 bound the distal promoter of ID3 and positively regulated its transcription. ID3 expression was significantly decreased in clinical lung cancer tissues, and was closely associated with overall survival outcomes in these patients. Functionally, ID3 deficiency promoted the metastatic ability of lung cancer cells through its effects on the transcriptional regulation of CDH1. Furthermore, the ectopic expression of ID3 in p53-knockdown cells restored E-cadherin expression. Collectively, the present results demonstrate that ID3 plays a tumor-suppressive role as a downstream effector of p53 and impedes lung cancer cell metastasis by regulating E-cadherin expression.


Assuntos
Neoplasias Pulmonares , Humanos , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Int Microbiol ; 27(1): 91-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37195349

RESUMO

The serine-arginine protein kinase-like protein, SrpkF, was identified as a regulator for the cellulose-responsive induction of cellulase genes in Aspergillus aculeatus. To analyze various aspects of SrpkF function, we examined the growth of the control strain (MR12); C-terminus deletion mutant, which produced SrpkF1-327 (ΔCsrpkF); whole gene-deletion mutant of srpkF (ΔsrpkF), srpkF overexpressing strain (OEsprkF); and the complemented strain (srpkF+) under various stress conditions. All test strains grew normally on minimal medium under control, high salt (1.5 M KCl), and high osmolality (2.0 M sorbitol and 1.0 M sucrose). However, only ΔCsrpkF showed reduced conidiation on 1.0 M NaCl media. Conidiation of ΔCsrpkF on 1.0 M NaCl media was reduced to 12% compared with that of srpkF+. Further, when OEsprkF and ΔCsrpkF were pre-cultured under salt stress conditions, germination under salt stress conditions was enhanced in both strains. By contrast, deletion of srpkF did not affect hyphal growth and conidiation under the same conditions. We then quantified the transcripts of the regulators involved in the central asexual conidiation pathway in A. aculeatus. The findings revealed that the expression of brlA, abaA, wetA, and vosA was reduced in ΔCsrpkF under salt stress. These data suggest that in A. aculeatus, SrpkF regulates conidiophore development. The C-terminus of SrpkF seems to be important for regulating SrpkF function in response to culture conditions such as salt stress.


Assuntos
Arginina Quinase , Aspergillus , Proteínas Fúngicas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Arginina Quinase/genética , Arginina Quinase/metabolismo , Cloreto de Sódio/metabolismo , Estresse Salino , Esporos Fúngicos/genética , Regulação Fúngica da Expressão Gênica
5.
Cancer Sci ; 114(9): 3698-3707, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37434391

RESUMO

The phase 2, single-arm, multicenter, open-label J-ALTA study evaluated the efficacy and safety of brigatinib in Japanese patients with advanced ALK+ non-small-cell lung cancer (NSCLC). One expansion cohort of J-ALTA enrolled patients previously treated with ALK tyrosine kinase inhibitors (TKIs); the main cohort included patients with prior alectinib ± crizotinib. The second expansion cohort enrolled patients with TKI-naive ALK+ NSCLC. All patients received brigatinib 180 mg once daily (7-day lead-in at 90 mg daily). Among 47 patients in the main cohort, 5 (11%) remained on brigatinib at the study end (median follow-up: 23 months). In this cohort, the independent review committee (IRC)-assessed objective response rate (ORR) was 34% (95% CI, 21%-49%); median duration of response was 14.8 months (95% CI, 5.5-19.4); median IRC-assessed progression-free survival (PFS) was 7.3 months (95% CI, 3.7-12.9). Among 32 patients in the TKI-naive cohort, 25 (78%) remained on brigatinib (median follow-up: 22 months); 2-year IRC-assessed PFS was 73% (90% CI, 55%-85%); IRC-assessed ORR was 97% (95% CI, 84%-100%); the median duration of response was not reached (95% CI, 19.4-not reached); 2-year duration of response was 70%. Grade ≥3 adverse events occurred in 68% and 91% of TKI-pretreated and TKI-naive patients, respectively. Exploratory analyses of baseline circulating tumor DNA in ALK TKI-pretreated NSCLC showed associations between poor PFS and EML4-ALK fusion variant 3 and TP53. Brigatinib is an important treatment option for Japanese patients with ALK+ NSCLC, including patients previously treated with alectinib.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/induzido quimicamente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/induzido quimicamente , População do Leste Asiático , Quinase do Linfoma Anaplásico/genética , Inibidores de Proteínas Quinases/efeitos adversos
6.
Cancer Immunol Immunother ; 72(9): 2971-2989, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37270735

RESUMO

Immune checkpoint inhibitors (ICIs) have shown superior clinical responses and significantly prolong overall survival (OS) for many types of cancer. However, some patients exhibit long-term OS, whereas others do not respond to ICI therapy at all. To develop more effective and long-lasting ICI therapy, understanding the host immune response to tumors and the development of biomarkers are imperative. In this study, we established an MC38 immunological memory mouse model by administering an anti-PD-L1 antibody and evaluating the detailed characteristics of the immune microenvironment including the T cell receptor (TCR) repertoire. In addition, we found that the memory mouse can be established by surgical resection of residual tumor following anti-PD-L1 antibody treatment with a success rate of > 40%. In this model, specific depletion of CD8 T cells revealed that they were responsible for the rejection of reinoculated MC38 cells. Analysis of the tumor microenvironment (TME) of memory mice using RNA-seq and flow cytometry revealed that memory mice had a quick and robust immune response to MC38 cells compared with naïve mice. A TCR repertoire analysis indicated that T cells with a specific TCR repertoire were expanded in the TME, systemically distributed, and preserved in the host for a long time period. We also identified shared TCR clonotypes between serially resected tumors in patients with colorectal cancer (CRC). Our results suggest that memory T cells are widely preserved in patients with CRC, and the MC38 memory model is potentially useful for the analysis of systemic memory T-cell behavior.


Assuntos
Neoplasias do Colo , Neoplasias Retais , Humanos , Animais , Camundongos , Células T de Memória , Modelos Animais de Doenças , Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
7.
Cancer Sci ; 113(11): 3888-3900, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35950895

RESUMO

The rearrangement of anaplastic lymphoma kinase (ALK) occurs in 3%-5% of patients with non-small cell lung cancer (NSCLC) and confers sensitivity to ALK-tyrosine kinase inhibitors (TKIs). For the treatment of patients with ALK-rearranged NSCLC, various additional ALK-TKIs have been developed. Ceritinib is a second-generation ALK-TKI and has shown great efficacy in the treatment of patients with both newly diagnosed and crizotinib (a first-generation ALK-TKI)-refractory ALK-rearranged NSCLC. However, tumors can also develop ceritinib resistance. This may result from secondary ALK mutations, but other mechanisms responsible for this have not been fully elucidated. In this study, we explored the mechanisms of ceritinib resistance by establishing ceritinib-resistant, echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive H3122 cells and ceritinib-resistant patient-derived cells. We identified a mechanism of ceritinib resistance induced by bypass signals that is mediated by the overexpression and activation of fibroblast growth factor receptor 3 (FGFR3). FGFR3 knockdown by small hairpin RNA or treatment with FGFR inhibitors was found to resensitize the resistant cells to ceritinib in vitro and in vivo. FGFR ligands from either human serum or fetal bovine serum were able to activate FGFR3 and induce ceritinib resistance. A detailed analysis of ceritinib-resistant patient-derived specimens confirmed that tyrosine-protein kinase Met (cMET) amplification induces ceritinib resistance. Amplified cMET counteractivated EGFR and/or Her3 and induced ceritinib resistance. These results reveal multiple ceritinib resistance mechanisms and suggest that ceritinib resistance might be overcome by identifying precise resistance mechanisms.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Humanos , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética
8.
Curr Genet ; 68(1): 143-152, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34453575

RESUMO

Aspergillus aculeatus produces cellulolytic enzymes in the presence of their substrates. We screened a library of 12,000 A. aculeatus T-DNA-inserted mutants to identify a regulatory factor involved in the expression of their enzyme genes in response to inducers. We found one mutant that reduced the expression of FIII-avicelase (chbI) in response to cellulose. T-DNA was inserted into a putative protein kinase gene similar to AN10082 in A. nidulans, serine-arginine protein kinase F, SrpkF. Fold increases in srpkF gene expression in response to various carbon sources were 2.3 (D-xylose), 44 (Avicel®), 59 (Bacto™ Tryptone), and 98 (no carbon) compared with D-glucose. Deletion of srpkF in A. aculeatus resulted in a significant reduction in cellulose-responsive expression of chbI, hydrocellulase (cel7b), and FIb-xylanase (xynIb) genes at an early induction phase. Further, the srpkF-overexpressing strain showed upregulation of the srpkF gene from four- to nine-fold higher than in the control strain. srpkF overexpression upregulated cbhI and cel7b in response to cellobiose and the FI-carboxymethyl cellulase gene (cmc1) and xynIb in response to D-xylose. However, the srpkF deletion did not affect the expression of xynIb in response to D-xylose due to the less expression of srpkF under the D-xylose condition. Our data demonstrate that SrpkF is primarily involved in cellulose-responsive expression, though it has a potential to stimulate gene expression in response to both cellobiose and D-xylose in A. aculeatus.


Assuntos
Arginina Quinase , Celulase , Arginina , Arginina Quinase/metabolismo , Aspergillus , Celobiose/metabolismo , Celulase/genética , Proteínas Fúngicas/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Serina , Transdução de Sinais , Xilose/metabolismo
9.
Cancer Sci ; 112(6): 2299-2313, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33735501

RESUMO

Podoplanin is a key molecule for enhancing tumor-induced platelet aggregation. Podoplanin interacts with CLEC-2 on platelets via PLatelet Aggregation-inducing domains (PLAGs). Among our generated antibodies, those targeting the fourth PLAG domain (PLAG4) strongly suppress podoplanin-CLEC-2 binding and podoplanin-expressing tumor growth and metastasis. We previously performed a single-dose toxicity study of PLAG4-targeting anti-podoplanin-neutralizing antibodies and found no acute toxicity in cynomolgus monkeys. To confirm the therapeutic efficacy and toxicity of podoplanin-targeting antibodies, a syngeneic mouse model that enables repeated dose toxicity tests is needed. Replacement of mouse PLAG1-PLAG4 domains with human homologous domains drastically decreased the platelet-aggregating activity. Therefore, we searched the critical domain of the platelet-aggregating activity in mouse podoplanin and found that the mouse PLAG4 domain played a critical role in platelet aggregation, similar to the human PLAG4 domain. Human/mouse chimeric podoplanin, in which a limited region containing mouse PLAG4 was replaced with human homologous region, exhibited a similar platelet-aggregating activity to wild-type mouse podoplanin. Thus, we generated knock-in mice with human/mouse chimeric podoplanin expression (PdpnKI/KI mice). Our previously established PLAG4-targeting antibodies could suppress human/mouse chimeric podoplanin-mediated platelet aggregation and tumor growth in PdpnKI/KI mice. Repeated treatment of PdpnKI/KI mice with antibody-dependent cell-mediated cytotoxicity activity-possessing PG4D2 antibody did not result in toxicity or changes in hematological and biochemical parameters. Our results suggest that anti-podoplanin-neutralizing antibodies could be used safely as novel anti-tumor agents. Our generated PdpnKI/KI mice are useful for investigating the efficacy and toxicity of human podoplanin-targeting drugs.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Antineoplásicos/uso terapêutico , Glicoproteínas de Membrana/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Sci ; 112(6): 2371-2380, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33686722

RESUMO

Osimertinib is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) that is effective in treating both naïve and T790M-mutated EGFR-TKI-resistant non-small cell lung cancer patients. The EGFR C797S mutation is the major osimertinib resistance mechanism. The present study monitored the EGFR C797S mutation during osimertinib treatment in Japanese patients using droplet digital PCR (ddPCR). In our first cohort, C797S detection was validated with tumor specimens and/or plasma samples from 26 patients using ddPCR with custom-designed probes detecting and discriminating T790M and C797S in cis and trans positions. In our second cohort, 18 patients with EGFR-T790M who were going to start osimertinib were analyzed using ddPCR by collecting the plasma samples every month from the beginning of the course of osimertinib. In the first cohort, C797S was detected in 15.4% of patients. C797S and T790M in cis and trans positions were distinguished using ddPCR. In the second cohort, serial cfDNA evaluation revealed that the rate of EGFR mutation changes with disease state. Increases of EGFR mutation were detected, including C797S several months before the diagnosis of disease progression. As with the first cohort, C797S and T790M in cis and trans position were distinguished by ddPCR at disease progression. Coincidentally, in the first cohort, next generation sequencing detected NRAS Q61K mutation and the resistance with NRAS Q61K mutation was overcome by trametinib. In the second cohort, serial cfDNA analysis was useful for evaluating bone oligo-progression and local radiation therapy.


Assuntos
Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , GTP Fosfo-Hidrolases/genética , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Membrana/genética , Mutação , Acrilamidas/uso terapêutico , Idoso , Compostos de Anilina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Ácidos Nucleicos Livres , Progressão da Doença , Receptores ErbB/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Japão , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
11.
Cancer Sci ; 111(3): 932-939, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31961053

RESUMO

The treatment for anaplastic lymphoma kinase (ALK)-positive lung cancer has been rapidly evolving since the introduction of several ALK tyrosine kinase inhibitors (ALK-TKI) in clinical practice. However, the acquired resistance to these drugs has become an important issue. In this study, we collected a total of 112 serial biopsy samples from 32 patients with ALK-positive lung cancer during multiple ALK-TKI treatments to reveal the resistance mechanisms to ALK-TKI. Among 32 patients, 24 patients received more than two ALK-TKI. Secondary mutations were observed in 8 of 12 specimens after crizotinib failure (G1202R, G1269A, I1171T, L1196M, C1156Y and F1245V). After alectinib failure, G1202R and I1171N mutations were detected in 7 of 15 specimens. G1202R, F1174V and G1202R, and P-gp overexpression were observed in 3 of 7 samples after ceritinib treatment. L1196M + G1202R, a compound mutation, was detected in 1 specimen after lorlatinib treatment. ALK-TKI treatment duration was longer in the on-target treatment group than that in the off-target group (13.0 vs 1.2 months). In conclusion, resistance to ALK-TKI based on secondary mutation in this study was similar to that in previous reports, except for crizotinib resistance. Understanding the appropriate treatment matching resistance mechanisms contributes to the efficacy of multiple ALK-TKI treatment strategies.


Assuntos
Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/genética , Aminopiridinas , Povo Asiático , Carbazóis/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Crizotinibe/uso terapêutico , Humanos , Lactamas , Lactamas Macrocíclicas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Mutação/genética , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis , Pirimidinas/uso terapêutico , Proteínas Recombinantes/genética , Sulfonas/uso terapêutico
12.
N Engl J Med ; 374(1): 54-61, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26698910

RESUMO

In a patient who had metastatic anaplastic lymphoma kinase (ALK)-rearranged lung cancer, resistance to crizotinib developed because of a mutation in the ALK kinase domain. This mutation is predicted to result in a substitution of cysteine by tyrosine at amino acid residue 1156 (C1156Y). Her tumor did not respond to a second-generation ALK inhibitor, but it did respond to lorlatinib (PF-06463922), a third-generation inhibitor. When her tumor relapsed, sequencing of the resistant tumor revealed an ALK L1198F mutation in addition to the C1156Y mutation. The L1198F substitution confers resistance to lorlatinib through steric interference with drug binding. However, L1198F paradoxically enhances binding to crizotinib, negating the effect of C1156Y and resensitizing resistant cancers to crizotinib. The patient received crizotinib again, and her cancer-related symptoms and liver failure resolved. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT01970865.).


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Lactamas Macrocíclicas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Receptores Proteína Tirosina Quinases/genética , Aminopiridinas , Quinase do Linfoma Anaplásico , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/secundário , Crizotinibe , Feminino , Humanos , Lactamas , Falência Hepática/etiologia , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/genética , Pessoa de Meia-Idade , Estrutura Molecular , Pirimidinas/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Sulfonas/uso terapêutico
13.
Cancer Sci ; 109(3): 572-580, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29336091

RESUMO

The anaplastic lymphoma kinase (ALK) gene encodes a receptor tyrosine kinase, and many kinds of ALK fusion genes have been found in a variety of carcinomas. There is almost no detectable expression of ALK in adults. However, through ALK gene rearrangement, the resultant ALK fusion protein is aberrantly overexpressed and dimerized through the oligomerization domains, such as the coiled-coil domain, in the fusion partner that induces abnormal constitutive activation of ALK tyrosine kinase. This results in dysregulated cell proliferation. ALK gene rearrangement has been observed in 3%-5% of non-small-cell lung cancers, and multiple ALK inhibitors have been developed for the treatment of ALK-positive lung cancer. Among those inhibitors, in Japan, 3 (4 in the USA) ALK tyrosine kinase inhibitors (TKIs) have been approved and are currently used in clinics. All of the currently approved ALK-TKIs have been shown to induce marked tumor regression in ALK-rearranged non-small-cell lung cancer; however, tumors inevitably relapse because of acquired resistance within a few years. This review focuses on ALK-TKIs, their resistance mechanisms, and the potential therapeutic strategies to overcome resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/genética , Receptores Proteína Tirosina Quinases/genética , Quinase do Linfoma Anaplásico , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos como Assunto , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo
14.
Biochem Biophys Res Commun ; 501(2): 527-533, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29738763

RESUMO

The ROS1 fusion gene has been identified in approximately 1% of non-small cell lung cancer (NSCLC) cases. Several clinical studies have highlighted ROS1 as a promising therapeutic target because crizotinib, a multi-targeted drug against ROS1, ALK, and the MET proto-oncogene, has elicited remarkable responses in ROS1-rearrangements NSCLC. However, acquired resistance mediated by ROS1 kinase domain mutations has been identified and a system to assess ROS1 inhibitors for these resistant mutations is necessary for the promotion of drug development. Publicly available NSCLC cell lines harboring the ROS1 fusion gene are limited to only HCC78 cells carrying SLC34A2-ROS1. This cell line exhibits resistance to ROS1 inhibitors through activation of the EGFR pathway, although the cells were established from ROS1-TKI naïve pleural effusion. Here, we demonstrate that 3D culture with gellan gum can restore the ROS1 oncogene dependence of HCC78 cells by upregulating the expression of the ROS1 fusion gene and reducing the activity of the EGFR pathway. Moreover, we established the HCC78xe3 cell line, a subclone of the HCC78 cell line, by repeated in vitro cultures from tumor xenografts and created xenograft tumors three times using in vitro cultured cells. This eventually enabled us to engraft and stably grow the cells in vivo, and subsequently evaluate various ROS1 inhibitors against HCC78xe3 cells by overexpressing crizotinib-resistant mutations in the ROS1 kinase domain including G2032R and D2033 N. We newly found that lorlatinib, a next generation ROS1/ALK inhibitor, remain the activity against D2033 N mutation. Furthermore, we demonstrated that HCC78xe3 cells expressing SLC34A2-ROS1 G2032R, and D2033 N, but not wild type (WT) cells, were resistant to crizotinib in vivo. Taken together, our data suggested that 3D cultures of HCC78 might reflect the features in patients and this new system will be a useful tool for evaluating ROS1 inhibitors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Meios de Cultura/farmacologia , Polissacarídeos Bacterianos/farmacologia , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIb/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Rearranjo Gênico/efeitos dos fármacos , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proto-Oncogene Mas
15.
N Engl J Med ; 368(25): 2395-401, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23724914

RESUMO

Crizotinib, an inhibitor of anaplastic lymphoma kinase (ALK), has also recently shown efficacy in the treatment of lung cancers with ROS1 translocations. Resistance to crizotinib developed in a patient with metastatic lung adenocarcinoma harboring a CD74-ROS1 rearrangement who had initially shown a dramatic response to treatment. We performed a biopsy of a resistant tumor and identified an acquired mutation leading to a glycine-to-arginine substitution at codon 2032 in the ROS1 kinase domain. Although this mutation does not lie at the gatekeeper residue, it confers resistance to ROS1 kinase inhibition through steric interference with drug binding. The same resistance mutation was observed at all the metastatic sites that were examined at autopsy, suggesting that this mutation was an early event in the clonal evolution of resistance. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT00585195.).


Assuntos
Adenocarcinoma/genética , Resistência a Medicamentos/genética , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Translocação Genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Crizotinibe , Evolução Fatal , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Mutação , Conformação Proteica , Proteínas Tirosina Quinases/química , Proteínas Proto-Oncogênicas/química , Relação Estrutura-Atividade
16.
Proc Natl Acad Sci U S A ; 108(18): 7535-40, 2011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-21502504

RESUMO

The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion oncogene represents a molecular target in a small subset of non-small cell lung cancers (NSCLCs). This fusion leads to constitutive ALK activation with potent transforming activity. In a pivotal phase 1 clinical trial, the ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-02341066) demonstrated impressive antitumor activity in the majority of patients with NSCLC harboring ALK fusions. However, despite these remarkable initial responses, cancers eventually develop resistance to crizotinib, usually within 1 y, thereby limiting the potential clinical benefit. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired resistance to crizotinib by exposing a highly sensitive EML4-ALK-positive NSCLC cell line to increasing doses of crizotinib until resistance emerged. We found that cells resistant to intermediate doses of crizotinib developed amplification of the EML4-ALK gene. Cells resistant to higher doses (1 µM) also developed a gatekeeper mutation, L1196M, within the kinase domain, rendering EML4-ALK insensitive to crizotinib. This gatekeeper mutation was readily detected using a unique and highly sensitive allele-specific PCR assay. Although crizotinib was ineffectual against EML4-ALK harboring the gatekeeper mutation, we observed that two structurally different ALK inhibitors, NVP-TAE684 and AP26113, were highly active against the resistant cancer cells in vitro and in vivo. Furthermore, these resistant cells remained highly sensitive to the Hsp90 inhibitor 17-AAG. Thus, we have developed a model of acquired resistance to ALK inhibitors and have shown that second-generation ALK TKIs or Hsp90 inhibitors are effective in treating crizotinib-resistant tumors harboring secondary gatekeeper mutations.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão Oncogênica/genética , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Crizotinibe , Primers do DNA/genética , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Immunoblotting , Hibridização in Situ Fluorescente , Camundongos , Camundongos Nus , Mutação/genética , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Compostos Organofosforados/farmacologia , Fosforilação/efeitos dos fármacos , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida , Transfecção
17.
Cancer Lett ; 584: 216632, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38216082

RESUMO

WNT/ß-catenin signaling is aberrantly activated in colorectal cancer (CRC) mainly by loss-of-function mutations in adenomatous polyposis coli (APC) and is involved in tumor progression. Tankyrase inhibitors, which suppress WNT/ß-catenin signaling, are currently in pre-clinical and clinical trials. However, the mechanisms of resistance to tankyrase inhibitors remain unclear. In this study, we established tankyrase inhibitor-resistant CRC cells, JC73-RK100, from APC-mutated patient-derived CRC cells. JC73-RK100 cells and several CRC cell lines were sensitive to tankyrase inhibitors at low concentrations but were resistant at high concentrations, showing an intrinsic/acquired bell-shaped dose response. Mechanistically, tankyrase inhibitors at high concentrations promoted BRD3/4-dependent E2F target gene transcription and over-activated cell cycle progression in these cells. BET inhibitors canceled the bell-shaped dose response to tankyrase inhibitors. Combination of tankyrase and BET inhibitors significantly suppressed tumor growth in a mouse xenograft model. These observations suggest that the combination of tankyrase and BET inhibitors may be a useful therapeutic approach to overcome the resistance of a subset of CRCs to tankyrase inhibitors.


Assuntos
Polipose Adenomatosa do Colo , Antineoplásicos , Neoplasias Colorretais , Tanquirases , Animais , Humanos , Camundongos , Polipose Adenomatosa do Colo/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , beta Catenina/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Via de Sinalização Wnt
18.
Acta Biomater ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972624

RESUMO

The extracellular matrix (ECM) of cancer tissues is rich in dense collagen, contributing to the stiffening of these tissues. Increased stiffness has been reported to promote cancer cell proliferation, invasion, metastasis, and prevent drug delivery. Replicating the structure and mechanical properties of cancer tissue in vitro is essential for developing cancer treatment drugs that target these properties. In this study, we recreated specific characteristics of cancer tissue, such as collagen density and high elastic modulus, using a colorectal cancer cell line as a model. Using our original material, collagen microfibers (CMFs), and a constructed three-dimensional (3D) cancer-stromal tissue model, we successfully reproduced an ECM highly similar to in vivo conditions. Furthermore, our research demonstrated that cancer stem cell markers expressed in the 3D cancer-stromal tissue model more closely mimic in vivo conditions than traditional two-dimensional cell cultures. We also found that CMFs might affect an impact on how cancer cells express these markers. Our 3D CMF-based model holds promise for enhancing our understanding of colorectal cancer and advancing therapeutic approaches. STATEMENT OF SIGNIFICANCE: Reproducing the collagen content and stiffness of cancer tissue is crucial in comprehending the properties of cancer and advancing anticancer drug development. Nonetheless, the use of collagen as a scaffold material has posed challenges due to its poor solubility, hindering the replication of a cancer microenvironment. In this study, we have successfully recreated cancer tissue-specific characteristics such as collagen density, stiffness, and the expression of cancer stem cell markers in three-dimensional (3D) colorectal cancer stromal tissue, utilizing a proprietary material known as collagen microfiber (CMF). CMF proves to be an ideal scaffold material for replicating cancer stromal tissue, and these 3D tissues constructed with CMFs hold promise in contributing to our understanding of cancer and the development of therapeutic drugs.

19.
NPJ Precis Oncol ; 8(1): 46, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396251

RESUMO

Brigatinib-based therapy was effective against osimertinib-resistant EGFR C797S mutants and is undergoing clinical studies. However, tumor relapse suggests additional resistance mutations might emerge. Here, we first demonstrated the binding mode of brigatinib to the EGFR-T790M/C797S mutant by crystal structure analysis and predicted brigatinib-resistant mutations through a cell-based assay including N-ethyl-N-nitrosourea (ENU) mutagenesis. We found that clinically reported L718 and G796 compound mutations appeared, consistent with their proximity to the binding site of brigatinib, and brigatinib-resistant quadruple mutants such as EGFR-activating mutation/T790M/C797S/L718M were resistant to all the clinically available EGFR-TKIs. BI-4020, a fourth-generation EGFR inhibitor with a macrocyclic structure, overcomes the quadruple and major EGFR-activating mutants but not the minor mutants, such as L747P or S768I. Molecular dynamics simulation revealed the binding mode and affinity between BI-4020 and EGFR mutants. This study identified potential therapeutic strategies using the new-generation macrocyclic EGFR inhibitor to overcome the emerging ultimate resistance mutants.

20.
Acta Biomater ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38801868

RESUMO

The development of high-throughput anticancer drug screening methods using patient-derived cancer cell (PDC) lines that maintain their original characteristics in an in vitro three-dimensional (3D) culture system poses a significant challenge to achieving personalized cancer medicine. Because stromal tissue plays a critical role in the composition and maintenance of the cancer microenvironment, in vitro 3D-culture using reconstructed stromal tissues has attracted considerable attention. Here, a simple and unique in vitro 3D-culture method using heparin and collagen together with fibroblasts and endothelial cells to fabricate vascularized 3D-stromal tissues for in vitro culture of PDCs is reported. Whereas co-treatment with bevacizumab, a monoclonal antibody against vascular endothelial growth factor, and 5-fluorouracil significantly reduced the survival rate of 3D-cultured PDCs to 30%, separate addition of each drug did not induce comparable strong cytotoxicity, suggesting the possibility of evaluating the combined effect of anticancer drugs and angiogenesis inhibitors. Surprisingly, drug evaluation using eight PDC lines with the 3D-culture method resulted in a drug efficacy concordance rate of 75% with clinical outcomes. The model is expected to be applicable to in vitro throughput drug screening for the development of personalized cancer medicine. STATEMENT OF SIGNIFICANCE: To replicate the cancer microenvironment, we constructed a cancer-stromal tissue model in which cancer cells are placed above and inside stromal tissue with vascular network structures derived from vascular endothelial cells in fibroblast tissue using CAViTs method. Using this method, we were able to reproduce the invasion and metastasis processes of cancer cells observed in vivo. Using patient-derived cancer cells, we assessed the possibility of evaluating the combined effect with an angiogenesis inhibitor. Further, primary cancer cells also grew on the stromal tissues with the normal medium. These data suggest that the model may be useful for new in vitro drug screening and personalized cancer medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA