Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 290(24): 15052-65, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25869139

RESUMO

Glutamatergic neurotransmission is evolutionarily conserved across animal phyla. A major class of glutamate receptors consists of the metabotropic glutamate receptors (mGluRs). In C. elegans, three mGluR genes, mgl-1, mgl-2, and mgl-3, are organized into three subgroups, similar to their mammalian counterparts. Cellular reporters identified expression of the mgls in the nervous system of C. elegans and overlapping expression in the pharyngeal microcircuit that controls pharyngeal muscle activity and feeding behavior. The overlapping expression of mgls within this circuit allowed the investigation of receptor signaling per se and in the context of receptor interactions within a neural network that regulates feeding. We utilized the pharmacological manipulation of neuronally regulated pumping of the pharyngeal muscle in the wild-type and mutants to investigate MGL function. This defined a net mgl-1-dependent inhibition of pharyngeal pumping that is modulated by mgl-3 excitation. Optogenetic activation of the pharyngeal glutamatergic inputs combined with electrophysiological recordings from the isolated pharyngeal preparations provided further evidence for a presynaptic mgl-1-dependent regulation of pharyngeal activity. Analysis of mgl-1, mgl-2, and mgl-3 mutant feeding behavior in the intact organism after acute food removal identified a significant role for mgl-1 in the regulation of an adaptive feeding response. Our data describe the molecular and cellular organization of mgl-1, mgl-2, and mgl-3. Pharmacological analysis identified that, in these paradigms, mgl-1 and mgl-3, but not mgl-2, can modulate the pharyngeal microcircuit. Behavioral analysis identified mgl-1 as a significant determinant of the glutamate-dependent modulation of feeding, further highlighting the significance of mGluRs in complex C. elegans behavior.


Assuntos
Caenorhabditis elegans/fisiologia , Comportamento Alimentar , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Primers do DNA , Filogenia , Reação em Cadeia da Polimerase , Receptores de Glutamato Metabotrópico/classificação , Receptores de Glutamato Metabotrópico/genética
2.
J Neurosci ; 31(8): 3007-15, 2011 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-21414922

RESUMO

Animals facing conflicting sensory cues make a behavioral choice between competing alternatives through integration of the sensory cues. Here, we performed a genetic screen to identify genes important for the sensory integration of two conflicting cues, the attractive odorant diacetyl and the aversive stimulus Cu(2+), and found that the membrane-bound guanylyl cyclase GCY-28 and the receptor tyrosine kinase SCD-2 regulate the behavioral choice between these alternatives in Caenorhabditis elegans. The gcy-28 mutants and scd-2 mutants show an abnormal bias in the behavioral choice between the cues, although their responses to each individual cue are similar to those in wild-type animals. Mutants in a gene encoding a cyclic nucleotide gated ion channel, cng-1, also exhibit the defect in sensory integration. Molecular genetic analyses suggested that GCY-28 and SCD-2 regulate sensory integration in AIA interneurons, where the conflicting sensory cues may converge. Genetic ablation or hyperpolarization of AIA interneurons showed nearly the same phenotype as gcy-28 or scd-2 mutants in the sensory integration, although this did not affect the sensory response to each individual cue. In gcy-28 or scd-2 mutants, activation of AIA interneurons is sufficient to restore normal sensory integration. These results suggest that the activity of AIA interneurons regulates the behavioral choice between the alternatives. We propose that GCY-28 and SCD-2 regulate sensory integration by modulating the activity of AIA interneurons.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/enzimologia , Comportamento de Escolha/fisiologia , Guanilato Ciclase/fisiologia , Interneurônios/enzimologia , Proteínas Tirosina Quinases/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Receptores Acoplados a Guanilato Ciclase/fisiologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Guanilato Ciclase/genética , Interneurônios/citologia , Proteínas de Membrana , Proteínas Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Acoplados a Guanilato Ciclase/genética
3.
Genes Cells ; 16(5): 565-75, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21518154

RESUMO

Defecation behavior in Caenorhabditis elegans is driven by an endogenous ultradian clock in the intestine. Its periods are positively regulated by FLR-1, an ion channel of the epithelial sodium channel/degenerin superfamily, and FLR-4, a protein kinase with a hydrophobic domain at the carboxyl terminus. FLR-1 has many putative phosphorylation sites in the C-terminal intracellular region. This structure implies that the periods may be regulated by the phosphorylation of FLR-1 by FLR-4, but it remains to be clarified. Here, we show that a truncated FLR-1 lacking the C-terminal intracellular region resulted in longer periods, suggesting that this region is involved in the negative regulation of defecation cycle periods. Contrary to our expectation, FLR-4 was still necessary for the function of the truncated FLR-1. Furthermore, FLR-4 containing a kinase-dead mutation or lacking the whole kinase domain was sufficient for normal defecation cycle periods. FLR-4 was necessary for the stable expression of FLR-1::GFP, and its hydrophobic domain was sufficient also for this function. FLR-1 and FLR-4 are often colocalized in the plasma membrane. These data showed an unexpected role of FLR-4: its hydrophobic domain stabilizes the FLR-1 ion channel, a key regulator of defecation cycle periods in the intestine.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Sódio/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Membrana Celular/metabolismo , Ritmo Circadiano , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Mutação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Canais de Sódio/genética
4.
J Neurosci ; 30(48): 16365-75, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21123582

RESUMO

The enhancement of sensory responses after prior exposure to a stimulus is a fundamental mechanism of neural function in animals. Its molecular basis, however, has not been studied in as much depth as the reduction of sensory responses, such as adaptation or habituation. We report here that the avoidance behavior of the nematode Caenorhabditis elegans in response to repellent odors (2-nonanone or 1-octanol) is enhanced rather than reduced after preexposure to the odors. This enhancement effect of preexposure was maintained for at least 1 h after the conditioning. The enhancement of 2-nonanone avoidance was not dependent on the presence or absence of food during conditioning, which generally functions as a strong positive or negative unconditioned stimulus in the animals. These results suggest that the enhancement is acquired as a type of nonassociative learning. In addition, genetic and pharmacological analyses revealed that the enhancement of 2-nonanone avoidance requires dopamine signaling via D(2)-like dopamine receptor DOP-3, which functions in a pair of RIC interneurons to regulate the enhancement. Because dopamine signaling has been tightly linked with food-related information to modulate various behaviors of C. elegans, it may play different role in the regulation of the enhancement of 2-nonanone avoidance. Thus, our data suggest a new genetic and pharmacological paradigm for nonassociative enhancement of neural responses that is regulated by dopamine signaling.


Assuntos
Aprendizagem da Esquiva/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Dopamina/fisiologia , Odorantes , Receptores de Dopamina D2/fisiologia , Transdução de Sinais/fisiologia , 1-Octanol/toxicidade , Animais , Caenorhabditis elegans , Dopamina/deficiência , Técnicas de Inativação de Genes , Cetonas/toxicidade , Receptores de Dopamina D2/deficiência
5.
Genes Cells ; 14(10): 1141-54, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19735483

RESUMO

The intestine plays an essential role in organism-wide regulatory networks in both vertebrates and invertebrates. In Caenorhabditis elegans, class 1 flr genes (flr-1, flr-3 and flr-4) act in the intestine and control growth rates and defecation cycle periods, while class 2 flr genes (flr-2, flr-5, flr-6 and flr-7) are characterized by mutations that suppress the slow growth of class 1 flr mutants. This study revealed that flr-2 gene controls antibacterial defense and intestinal color, confirming that flr-2 regulates intestinal functions. flr-2 encoded the only glycoprotein hormone alpha subunit in C. elegans and was expressed in certain neurons. Furthermore, FLR-2 bound to another secretory protein GHI-1, which belongs to a family of lipid- and lipopolysaccharide-binding proteins. A ghi-1 deletion mutation partially suppressed the short defecation cycle periods of class 1 flr mutants, and this effect was enhanced by flr-2 mutations. Thus, FLR-2 acts as a signaling molecule for the neural control of intestinal functions, which is achieved in a functional network involving class 1 and class 2 flr genes as well as ghi-1. These results are informative to studies of glycoprotein hormone signaling in higher animals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Intestinos/inervação , Intestinos/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Escherichia coli/fisiologia , Subunidade alfa de Hormônios Glicoproteicos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno , Expectativa de Vida , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Neurônios/citologia , Neurônios/metabolismo , Pigmentação , Ligação Proteica , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
6.
Neuron ; 33(5): 751-63, 2002 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-11879652

RESUMO

Animals sense and adapt to variable environments by regulating appropriate sensory signal transduction pathways. Here, we show that calcineurin plays a key role in regulating the gain of sensory neuron responsiveness across multiple modalities. C. elegans animals bearing a loss-of-function mutation in TAX-6, a calcineurin A subunit, exhibit pleiotropic abnormalities, including many aberrant sensory behaviors. The tax-6 mutant defect in thermosensation is consistent with hyperactivation of the AFD thermosensory neurons. Conversely, constitutive activation of TAX-6 causes a behavioral phenotype consistent with inactivation of AFD neurons. In olfactory neurons, the impaired olfactory response of tax-6 mutants to an AWC-sensed odorant is caused by hyperadaptation, which is suppressible by a mutation causing defective olfactory adaptation. Taken together, our results suggest that stimulus-evoked calcium entry activates calcineurin, which in turn negatively regulates multiple aspects of sensory signaling.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Calcineurina/metabolismo , Neurônios Aferentes/fisiologia , Transdução de Sinais , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Calcineurina/química , Calcineurina/genética , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Locomoção , Modelos Biológicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Concentração Osmolar , Pentanóis/metabolismo , Fenótipo , Subunidades Proteicas , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Olfato/fisiologia , Canais de Cátion TRPV , Sensação Térmica , Canais de Potencial de Receptor Transitório
7.
J Neurosci ; 27(4): 741-50, 2007 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-17251413

RESUMO

Behavioral plasticity induced by the integration of two sensory signals, such as associative learning, is an important issue in neuroscience, but its evolutionary origin and diversity have not been explored sufficiently. We report here a new type of such behavioral plasticity, which we call butanone enhancement, in Caenorhabditis elegans adult hermaphrodites: C. elegans specifically enhances chemotaxis to butanone by preexposure to butanone and food. Mutant analysis revealed that this plasticity requires the AWC(ON) olfactory neuron, whose fate is known to be determined by the NSY-1/ASK1 MAPKKK (mitogen-activated protein kinase kinase kinase) cascade as well as the DAF-11 and ODR-1 guanylyl cyclases. These proteins also control many aspects of olfactory sensation/plasticity in AWC neurons and seem to provide appropriate cellular conditions for butanone enhancement in the AWC(ON) neuron. Butanone enhancement also required the functions of Bardet-Biedl syndrome genes in the AWC(ON) neuron but not other genes that control ciliary transport. Furthermore, preexposure to butanone and the odor of food was enough for the enhancement of butanone chemotaxis. These results suggest that the AWC(ON) olfactory neuron may conduct a behavioral plasticity resembling associative learning and that the functions of Bardet-Biedl syndrome genes in sensory cilia may play an important role in this plasticity.


Assuntos
Comportamento Animal/fisiologia , Butanonas/farmacologia , Caenorhabditis elegans/fisiologia , Quimiotaxia/fisiologia , Alimentos , Neurônios Receptores Olfatórios/fisiologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Dados de Sequência Molecular , Mutação , Odorantes , Neurônios Receptores Olfatórios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Olfato/efeitos dos fármacos , Olfato/fisiologia
8.
Mol Biol Cell ; 16(3): 1355-65, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15647385

RESUMO

The defecation behavior of the nematode Caenorhabditis elegans is controlled by a 45-s ultradian rhythm. An essential component of the clock that regulates the rhythm is the inositol trisphosphate receptor in the intestine, but other components remain to be discovered. Here, we show that the flr-4 gene, whose mutants exhibit very short defecation cycle periods, encodes a novel serine/threonine protein kinase with a carboxyl terminal hydrophobic region. The expression of functional flr-4::GFP was detected in the intestine, part of pharyngeal muscles and a pair of neurons, but expression of flr-4 in the intestine was sufficient for the wild-type phenotype. Furthermore, laser killing of the flr-4-expressing neurons did not change the defecation phenotypes of wild-type and flr-4 mutant animals. Temperature-shift experiments with a temperature-sensitive flr-4 mutant suggested that FLR-4 acts in a cell-functional rather than developmental aspect in the regulation of defecation rhythms. The function of FLR-4 was impaired by missense mutations in the kinase domain and near the hydrophobic region, where the latter allele seemed to be a weak antimorph. Thus, a novel protein kinase with a unique structural feature acts in the intestine to increase the length of defecation cycle periods.


Assuntos
Caenorhabditis elegans/enzimologia , Defecação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Alelos , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans , Canais de Cálcio/química , Ritmo Circadiano , Clonagem Molecular , DNA Complementar/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Genótipo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Receptores de Inositol 1,4,5-Trifosfato , Mucosa Intestinal/metabolismo , Intestinos/enzimologia , Lasers , Modelos Genéticos , Dados de Sequência Molecular , Músculos/enzimologia , Mutação , Mutação de Sentido Incorreto , Neurônios/enzimologia , Neurônios/metabolismo , Oscilometria , Músculos Faríngeos/enzimologia , Fenótipo , Proteínas Serina-Treonina Quinases/biossíntese , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Proteínas Recombinantes de Fusão/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Temperatura , Fatores de Tempo , Distribuição Tecidual , Transgenes
9.
DNA Res ; 14(4): 183-99, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17921522

RESUMO

Helicase-like proteins play a crucial role in nucleic acid- and chromatin-mediated reactions. In this study, we identified 134 helicase-like proteins in the nematode Caenorhabditis elegans and classified the proteins into 10 known subfamilies and a group of orphan genes on the basis of sequence similarity. We characterized loss-of-function phenotypes in RNA interference (RNAi)-treated animals for helicase family members, using the RNAi feeding method, and found several previously unreported phenotypes. Fifty-one (39.5%) of 129 genes tested showed development- or growth-defect phenotypes, and many of these genes were putative nematode homologs of essential genes in a unicellular eukaryote, budding yeast, suggesting conservation of these essential proteins in both species. Comparative analyses between these species identified evolutionarily diverged nematode proteins as well as conserved family members. Chromosome mapping of the nematode genes revealed 10 pairs of putative duplicated genes and clusters of C. elegans-specific SNF2-like genes and Helitrons. Analyses of transcriptional profile data revealed a predominantly oogenesis- and germline-enriched expression of many helicase-like genes. Finally, we identified the D2005.5(drh-3) gene in an RNAi-based screen for genes involved in resistance to X-ray irradiation. Analysis of DRH-3 will clarify the potentially novel mechanism by which it protects against X-ray-induced damage in C. elegans.


Assuntos
Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , DNA Helicases/genética , Genes de Helmintos , Genômica , Interferência de RNA , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/efeitos da radiação , Larva/crescimento & desenvolvimento , Larva/efeitos da radiação , Fenótipo , Tolerância a Radiação/efeitos da radiação , Raios X
10.
Genes Cells ; 12(5): 593-602, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17535250

RESUMO

Intraflagellar transport (IFT) is essential machinery for biogenesis and maintenance of cilia in many eukaryotic and prokaryotic cells. A large number of polypeptides are known to be involved in IFT, but the physiological role of each component is not fully elucidated. Here, we identified a C. elegans orthologue of a Chlamydomonas reinhardtii IFT component, IFT-81, and found that its loss-of-function mutants show an unusual behavioral property and small body size. IFT-81 is expressed in sensory neurons, and localized at the base of cilia. The similar phenotypes with ift-81 mutants were also observed in several IFT mutants, suggesting these defects are caused by inability of IFT. We also demonstrated that IFT-81 interacts and co-localizes with IFT-74, which is another putative component of IFT. The ift-74 loss-of-function mutants showed phenocopies with ift-81 mutants, suggesting IFT-81 and IFT-74 play comparable functions. Moreover, ift-81 and ift-74 mutants similarly exhibited weak anomalies in cilia formation and obvious disruptions of transport in mature cilia. Thus, we conclude that IFT-81 and IFT-74 coordinately act in IFT in C. elegans sensory cilia.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Proteínas de Transporte/fisiologia , Flagelos/fisiologia , Animais , Animais Geneticamente Modificados , Transporte Biológico Ativo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Quimiotaxia , Cílios/fisiologia , Genes de Helmintos , Mutação , Neurônios Aferentes/fisiologia , Fenótipo
11.
Neural Dev ; 2: 24, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17986337

RESUMO

BACKGROUND: The left and right AWC olfactory neurons in Caenorhabditis elegans differ in their functions and in their expression of chemosensory receptor genes; in each animal, one AWC randomly takes on one identity, designated AWCOFF, and the contralateral AWC becomes AWCON. Signaling between AWC neurons induces left-right asymmetry through a gap junction network and a claudin-related protein, which inhibit a calcium-regulated MAP kinase pathway in the neuron that becomes AWCON. RESULTS: We show here that the asymmetry gene olrn-1 acts downstream of the gap junction and claudin genes to inhibit the calcium-MAP kinase pathway in AWCON. OLRN-1, a protein with potential membrane-association domains, is related to the Drosophila Raw protein, a negative regulator of JNK mitogen-activated protein (MAP) kinase signaling. olrn-1 opposes the action of two voltage-activated calcium channel homologs, unc-2 (CaV2) and egl-19 (CaV1), which act together to stimulate the calcium/calmodulin-dependent kinase CaMKII and the MAP kinase pathway. Calcium channel activity is essential in AWCOFF, and the two AWC neurons coordinate left-right asymmetry using signals from the calcium channels and signals from olrn-1. CONCLUSION: olrn-1 and voltage-activated calcium channels are mediators and targets of AWC signaling that act at the transition between a multicellular signaling network and cell-autonomous execution of the decision. We suggest that the asymmetry decision in AWC results from the intercellular coupling of voltage-regulated channels, whose cross-regulation generates distinct calcium signals in the left and right AWC neurons. The interpretation of these signals by the kinase cascade initiates the sustained difference between the two cells.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Canais de Cálcio/metabolismo , Lateralidade Funcional/genética , Proteínas de Membrana/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Condutos Olfatórios/crescimento & desenvolvimento , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/isolamento & purificação , Canais de Cálcio/genética , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diferenciação Celular/genética , Claudina-1 , Conexinas/genética , Conexinas/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/metabolismo
12.
Development ; 132(14): 3197-207, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15983401

RESUMO

Multidrug resistance-associated proteins (MRPs), when overexpressed, confer drug resistance to cancer cells by exporting anti-cancer agents through the cell membrane, but their role in animal development has not been elucidated. Here we show that an MRP homolog regulates larval development in the nematode Caenorhabditis elegans. C. elegans forms a special third-stage larva called a dauer larva under conditions inappropriate for growth. By contrast, we found that mutants in mrp-1, an MRP homolog gene, form dauer larvae even under conditions appropriate for growth, in the background of certain mutations that partially block the insulin signaling pathway. A functional mrp-1::GFP gene was shown to be expressed in many tissues, and the wild-type mrp-1 gene must be expressed in multiple tissues for a wild-type phenotype. Human MRP1 could substitute for C. elegans MRP-1 in dauer larva regulation, and an inhibitor of the human MRP1 transport activity impaired this function, showing that export activity is required for normal dauer larva regulation. Epistasis studies revealed that MRP-1 acts in neither the TGF-beta nor the cGMP signaling pathway. mrp-1 mutations enhanced the dauer-constitutive phenotype of mutants in the insulin signaling pathway more strongly than that in other pathways. Thus, MRP-1, through its export activity, supports the induction of the normal (non-dauer) life cycle by the insulin signaling pathway.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Caenorhabditis elegans/crescimento & desenvolvimento , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Genes Reporter , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Transporte Proteico/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/fisiologia , Análise de Sequência de DNA
13.
Development ; 130(14): 3237-48, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12783794

RESUMO

The dauer larva of the nematode Caenorhabditis elegans is a good model system for investigating the regulation of developmental fates by environmental cues. Here we show that SDF-9, a protein tyrosine phosphatase-like molecule, is involved in the regulation of dauer larva formation. The dauer larva of sdf-9 mutants is different from a normal dauer larva but resembles the dauer-like larva of daf-9 and daf-12 dauer-constitutive mutants. Like these mutants, the dauer-constitutive phenotypes of sdf-9 mutants were greatly enhanced by cholesterol deprivation. Epistasis analyses, together with the relationship between sdf-9 mutations and daf-9 expression, suggested that SDF-9 increases the activity of DAF-9 or helps the execution of the DAF-9 function. SDF-9 was expressed in two head cells in which DAF-9 is expressed. By their position and by genetic mosaic experiments, we identified these cells as XXXL/R cells, which are known as embryonic hypodermal cells and whose function at later stages is unknown. Killing of the sdf-9-expressing cells in the wild-type first-stage larva induced formation of the dauer-like larva. Since this study on SDF-9 and former studies on DAF-9 showed that the functions of these proteins are related to those of steroids, XXXL/R cells seem to play a key role in the metabolism or function of a steroid hormone(s) that acts in dauer regulation.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Hormônios/metabolismo , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/fisiologia , Transdução de Sinais , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Colesterol/metabolismo , Clonagem Molecular , DNA Complementar/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde , Larva/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Esteroides/metabolismo , Temperatura , Fatores de Tempo , Distribuição Tecidual , Transgenes
14.
J Neurobiol ; 58(3): 392-402, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14750151

RESUMO

Although transcriptional factors are known to play important roles in synaptic plasticity, their role in olfactory adaptation has not been studied well. Here we report that Ce-TBX-2, the TBX2/TBX3 transcriptional factor homologue of the nematode Caenorhabditis elegans, is involved in olfactory adaptation. Two missense hypomorphic mutations in this gene confer abnormality in adaptation, but not chemotaxis, to all the odorants sensed by AWC olfactory neurons. The Ce-tbx-2 gene is expressed in AWB, AWC, ASJ, and many pharyngeal neurons, but expression in AWC neurons is sufficient for normal adaptation. Unexpectedly, the protein product is localized mostly in cytoplasm. The AWC neurons in the mutants retain their characteristic morphology and many marker gene expressions, suggesting that the mutants are abnormal in neural functions rather than neuronal differentiation. The results of this study imply that some of the mammalian T-box family proteins, which play central roles in embryonic development, may also control functions like neural plasticity in differentiated neurons.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Olfato/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/genética , Citoplasma/metabolismo , DNA Complementar/análise , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Dados de Sequência Molecular , Mutação de Sentido Incorreto/genética , Sistema Nervoso/citologia , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Plasticidade Neuronal/genética , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Proteínas com Domínio T/genética , Fatores de Transcrição/genética
15.
Cell ; 109(5): 639-49, 2002 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-12062106

RESUMO

Animals sense many environmental stimuli simultaneously and integrate various sensory signals within the nervous system both to generate proper behavioral responses and also to form relevant memories. HEN-1, a secretory protein with an LDL receptor motif, regulates such processes in Caenorhabditis elegans. The hen-1 mutants show defects in the integration of two sensory signals and in behavioral plasticity by paired stimuli, although their sensation capability seems to be identical to that of the wild-type. The HEN-1 protein is expressed in two pairs of neurons, but expression in other neurons is sufficient for wild-type behavior. In addition, expression of HEN-1 at the adult stage is sufficient. Thus, HEN-1 regulates sensory processing non-cell-autonomously in the mature neuronal circuit.


Assuntos
Proteínas de Caenorhabditis elegans/isolamento & purificação , Caenorhabditis elegans/metabolismo , Aprendizagem/fisiologia , Proteínas do Tecido Nervoso/isolamento & purificação , Sistema Nervoso/crescimento & desenvolvimento , Vias Neurais/crescimento & desenvolvimento , Neurônios/metabolismo , Sensação/genética , Motivos de Aminoácidos/genética , Animais , Secreções Corporais/fisiologia , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Evolução Molecular , Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Vias Neurais/citologia , Vias Neurais/metabolismo , Neurônios/citologia , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Fenótipo , Filogenia , Receptores de LDL/química , Receptores de LDL/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA