Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(26): 11331-11341, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38907708

RESUMO

Carbonate minerals are ubiquitous in nature, and their dissolution impacts many environmentally relevant processes including preferential flow during geological carbon sequestration, pH buffering with climate-change induced ocean acidification, and organic carbon bioavailability in melting permafrost. In this study, we advance the atomic level understanding of calcite dissolution mechanisms to improve our ability to predict this complex process. We performed high pressure and temperature (1300 psi and 50 °C) batch experiments to measure transient dissolution of freshly cleaved calcite under H2O, H+, and H2CO3-dominated conditions, without and with an inhibitory anionic surfactant present. Before and after dissolution experiments, we measured dissolution etch-pit geometries using laser profilometry, and we used density functional theory to investigate relative adsorption energies of competing species that affect dissolution. Our results support the hypothesis that calcite dissolution is controlled by the ability of H2O to preferentially adsorb to surface Ca atoms over competing species, even when dissolution is dominated by H+ or H2CO3. More importantly, we identify for the first time that adsorbed H+ enhances the role of water by weakening surface Ca-O bonds. We also identify that H2CO3 undergoes dissociative adsorption resulting in adsorbed HCO3- and H+. Adsorbed HCO3- that competes with H2O for Ca acute edge sites inhibits dissolution, while adsorbed H+ at the neighboring surface of CO3 enhances dissolution. The net effect of the dissociative adsorption of H2CO3 is enhanced dissolution. These results will impact future efforts to more accurately model the impact of solutes in complex water matrices on carbonate mineral dissolution.


Assuntos
Carbonato de Cálcio , Ácido Carbônico , Prótons , Água , Carbonato de Cálcio/química , Ácido Carbônico/química , Água/química , Solubilidade , Adsorção
2.
Nat Water ; 2: 434-442, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38993391

RESUMO

We demonstrate the application of proton transfer time-of-flight mass spectrometry (PTR-TOF-MS) in monitoring the kinetics of disinfectant decay in water with a sensitivity one to three orders of magnitude greater than other analytical methods. Chemical disinfection inactivates pathogens during water treatment and prevents regrowth as water is conveyed in distribution system pipes, but it also causes formation of toxic disinfection by-products. Analytical limits have hindered kinetic models, which aid in ensuring water quality and protecting public health by predicting disinfection by-products formation. PTR-TOF-MS, designed for measuring gas phase concentrations of organic compounds, was able to simultaneously monitor aqueous concentrations of five inorganic haloamines relevant to chloramine disinfection under drinking water relevant concentrations. This novel application to aqueous analytes opens a new range of applications for PTR-TOF-MS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA