Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Inorg Chem ; 61(20): 7970-7979, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35523004

RESUMO

Separations based on molecular size (molecular sieving) are a solution for environmental remediation. We have synthesized and characterized two new metal-organic frameworks (MOFs) (Zn2M; M = Zn, Cd) with ultramicropores (<0.7 nm) suitable for molecular sieving. We explore the synthesis of these MOFs and the role that the DMSO/H2O/DMF solvent mixture has on the crystallization process. We further explore the crystallographic data for the DMSO and methanol solvated structures at 273 and 100 K; this not only results in high-quality structural data but also allows us to better understand the structural features at temperatures around the gas adsorption experiments. Structurally, the main difference between the two MOFs is that the central metal in the trimetallic node can be changed from Zn to Cd and that results in a sub-Å change in the size of the pore aperture, but a stark change in the gas adsorption properties. The separation selectivity of the MOF when M = Zn is infinite given the pore aperture of the MOF can accommodate CO2 while N2 and/or CH4 is excluded from entering the pore. Furthermore, due to the size exclusion behavior, the MOF has an adsorption selectivity of 4800:1 CO2/N2 and 5 × 1028:1 CO2/CH4. When M = Cd, the pore aperture of the MOF increases slightly, allowing N2 and CH4 to enter the pore, resulting in a 27.5:1 and a 10.5:1 adsorption selectivity, respectively; this is akin to UiO-66, a MOF that is not able to function as a molecular sieve for these gases. The data delineate how subtle sub-Å changes to the pore aperture of a framework can drastically affect both the adsorption selectivity and separation selectivity.

2.
Coord Chem Rev ; 4292021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33678810

RESUMO

Porphyrins are important molecules widely found in nature in the form of enzyme active sites and visible light absorption units. Recent interest in using these functional molecules as building blocks for the construction of metal-organic frameworks (MOFs) have rapidly increased due to the ease in which the locations of, and the distances between, the porphyrin units can be controlled in these porous crystalline materials. Porphyrin-based MOFs with atomically precise structures provide an ideal platform for the investigation of their structure-function relationships in the solid state without compromising accessibility to the inherent properties of the porphyrin building blocks. This review will provide a historical overview of the development and applications of porphyrin-based MOFs from early studies focused on design and structures, to recent efforts on their utilization in biomimetic catalysis, photocatalysis, electrocatalysis, sensing, and biomedical applications.

3.
Environ Sci Technol ; 54(21): 13509-13516, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33058682

RESUMO

The billions of tons of mineral dust released into the atmosphere each year provide an important surface for reaction with gas-phase pollutants. These reactions, which are often enhanced in the presence of light, can change both the gas-phase composition of the atmosphere and the composition and properties of the dust itself. Because dust contains titanium-rich grains, studies of dust photochemistry have largely employed commercial titanium dioxide as a proxy for its photochemically active fraction; to date, however, the validity of this model system has not been empirically determined. Here, for the first time, we directly investigate the photochemistry of the complement of natural titanium-containing minerals most relevant to mineral dust, including anatase, rutile, ilmenite, titanite, and several titanium-bearing species. Using ozone as a model gas-phase pollutant, we show that titanium-containing minerals other than titanium dioxide can also photocatalyze trace gas uptake, that samples of the same mineral phase can display very different reactivity, and that prediction of dust photoreactivity based on elemental/mineralogical analysis and/or light-absorbing properties is challenging. Together, these results show that the photochemistry of atmospheric dust is both richer and more complex than previously considered, and imply that a full understanding of the scope and impact of dust-mediated processes will require the community to engage with this complexity via the study of ambient mineral dust samples from diverse source regions.


Assuntos
Poeira , Titânio , Atmosfera , Poeira/análise , Minerais , Fotoquímica
4.
J Am Chem Soc ; 139(38): 13280-13283, 2017 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-28898074

RESUMO

Dithienylethene-containing molecules have been examined due to their photoswitching capabilities. We have prepared a bistable, optically triggered, metal-organic framework (MOF) containing a dithienylethene moiety that was synthesized and characterized. The advantage of this material is that, unlike other dithienylethene-containing MOFs, the properties of the pore can be changed via an optical trigger without the potential risk of structural damage to the framework. We illustrate the application of this MOF to chemical separations. With this class of materials, optically triggered conductivity, chemical storage and release, and sensing are possible.

5.
Nat Mater ; 14(5): 512-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25774952

RESUMO

Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic Zr(IV) ions as the active sites and to their superb accessibility as a defining element of their efficacy.

6.
J Am Chem Soc ; 137(23): 7488-94, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26000611

RESUMO

A series of zirconium-based, metal-organic frameworks (MOFs) were tested for their ability to adsorb and remove selenate and selenite anions from aqueous solutions. MOFs were tested for adsorption capacity and uptake time at different concentrations. NU-1000 was shown to have the highest adsorption capacity, and fastest uptake rates for both selenate and selenite, of all zirconium-based MOFs studied here. Herein, the mechanism of selenate and selenite adsorption on NU-1000 is explored to determine the important features that make NU-1000 a superior adsorbent for this application.


Assuntos
Compostos Organometálicos/química , Ácido Selênico/isolamento & purificação , Ácido Selenioso/isolamento & purificação , Água/química , Zircônio/química , Adsorção , Modelos Moleculares , Estrutura Molecular , Ácido Selênico/química , Ácido Selenioso/química , Propriedades de Superfície
7.
J Am Chem Soc ; 137(2): 919-25, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25574688

RESUMO

Herein, we demonstrate that the incorporation of an acidic hydrogen-bond-donating squaramide moiety into a porous UiO-67 metal-organic framework (MOF) derivative leads to dramatic acceleration of the biorelevant Friedel-Crafts reaction between indole and ß-nitrostyrene. In comparison, it is shown that free squaramide derivatives, not incorporated into MOF architectures, have no catalytic activity. Additionally, using the UiO-67 template, we were able to perform a direct comparison of catalytic activity with that of the less acidic urea-based analogue. This is the first demonstration of the functionalization of a heterogeneous framework with an acidic squaramide derivative.

8.
Inorg Chem ; 54(13): 6462-71, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26098267

RESUMO

A series of coordination polymer materials incorporating the highly anisotropic 2-(2-pyridyl)-1,10-phenanthroline (phenpy) building block have been synthesized and structurally characterized. M(phenpy)[Au(CN)2]2 (M = Cd, Mn) are isostructural and form a 1-D chain through bridging [Au(CN)2](-) units and extend into a 2-D sheet through aurophilic interactions. M(phenpy)(H2O)[Au(CN)2]2·2H2O (M = Cd, Mn, and Zn) are also isostructural but differ from the first set via the inclusion of a water molecule into the coordination sphere, resulting in a 1-D topology through aurophilic interactions. In(phenpy)(Cl)2[Au(CN)2]·0.5H2O forms a dimer through bridging chlorides and contains a free [Au(CN)2](-) unit. In the plane of the primary crystal growth direction, the birefringence values (Δn) of 0.37(2) (Cd(phenpy)[Au(CN)2]2), 0.50(3) (In(phenpy)(Cl)2[Au(CN)2]·0.5H2O), 0.56(3) and 0.59(6) (M(phenpy)(H2O)[Au(CN)2]2·2H2O M = Cd and Zn, respectively) were determined. ß, a structural parameter defined by phenpy units rotated in the A-C plane relative to the light propagation (C) direction, was found to correlate to Δn magnitudes. The addition of a carbon-carbon double bond to terpy has increased the molecular polarizability anisotropy of the building block, and all structures have reduced deviation from planarity in comparison to terpy and terpy derivative structures, leading to these higher Δn values, which are among the highest reported for crystalline solids.

9.
Angew Chem Int Ed Engl ; 53(2): 497-501, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24273208

RESUMO

Inspired by biology, in which a bimetallic hydroxide-bridged zinc(II)-containing enzyme is utilized to catalytically hydrolyze phosphate ester bonds, the utility of a zirconium(IV)-cluster-containing metal-organic framework as a catalyst for the methanolysis and hydrolysis of phosphate-based nerve agent simulants was examined. The combination of the strong Lewis-acidic Zr(IV) and bridging hydroxide anions led to ultrafast half-lives for these solvolysis reactions. This is especially remarkable considering that the actual catalyst loading was a mere 0.045 % as a result of the surface-only catalysis observed.


Assuntos
Materiais Biomiméticos/química , Substâncias para a Guerra Química/química , Compostos Organometálicos/química , Zinco/química , Zircônio/química , Hidrocarbonetos Aromáticos com Pontes/química , Catálise , Modelos Moleculares , Mimetismo Molecular , Estrutura Molecular , Sistema Nervoso/efeitos dos fármacos , Hidrolases de Triester Fosfórico/química , Porosidade , Relação Estrutura-Atividade
10.
Chem Commun (Camb) ; 60(19): 2629-2632, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38345342

RESUMO

Three-dimensional covalent connectors are valuable synthons for accessing crystalline or amorphous networks. Currently, fused polycyclic alkanes are employed as connectors in this context. We debut phosphorus-nitrogen (PN) cages as new 3-dimensional (3-D) inorganic connectors that yield crystalline and amorphous networks, including examples with gas porosity. We show that the high tunability of PN cages accelerates network diversification and the presence of a responsive 31P NMR spectroscopic handle provides structural insight. Collectively, this work unlocks a new and convenient 3-D synthon for reticular chemistry.

11.
Chemistry ; 19(29): 9606-18, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23749684

RESUMO

The geometric and electronic structure of an oxidized bimetallic Ni complex incorporating two redox-active Schiff-base ligands connected via a 1,2-phenylene linker has been investigated and compared to a monomeric analogue. Information from UV/Vis/NIR spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, electrochemistry, and density functional theory (DFT) calculations provides important information on the locus of oxidation for the bimetallic complex. The neutral bimetallic complex is conformationally dynamic at room temperature, which complicates characterization of the oxidized forms. Comparison to an oxidized monomer analogue 1 provides critical insight into the electronic structure of the oxidized bimetallic complex 2. Oxidation of 1 provides [1˙](+), which is characterized as a fully delocalized ligand radical complex; the spectroscopic signature of this derivative includes an intense NIR band at 4500 cm(-1). Oxidation of 2 to the bis-oxidized form affords a bis-ligand radical species [2˙˙](2+). Variable temperature EPR spectroscopy of [2˙˙](2+) shows no evidence of coupling, and the triplet and broken symmetry solutions afforded by theoretical calculations are essentially isoenergetic. [2˙˙](2+) is thus best described as incorporating two non-interacting ligand radicals. Interestingly, the intense NIR intervalence charge transfer band observed for the delocalized ligand-radical [1˙](+) exhibits exciton splitting in [2˙˙](2+), due to coupling of the monomer transition dipoles in the enforced oblique dimer geometry. Evaluating the splitting of the intense intervalence charge transfer band can thus provide significant geometric and electronic information in less rigid bis-ligand radical systems. Addition of excess pyridine to [2˙˙](2+) results in a shift in the oxidation locus from a bis-ligand radical species to the Ni(III) /Ni(III) derivative [2(py)4](2+), demonstrating that the ligand system can incorporate significant bulk in the axial positions.

12.
Langmuir ; 29(2): 806-14, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23244696

RESUMO

Both the adsorption of t-butylpyridine and the atomic-layer deposition of ultrathin conformal coatings of insulators (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar cells. One attractive interpretation is that these modifiers significantly shift the conduction-edge energy of the electrode, thereby shifting the onset potential for dark current arising from the interception of injected electrons by solution-phase redox shuttle components such as Co(phenanthroline)(3)(3+) and triiodide. For standard, high-area, nanoporous photoelectrodes, band-edge energies are difficult to measure directly. In contrast, for flat electrodes they are readily accessible from Mott-Schottky analyses of impedance data. Using such electrodes (specifically TiO(2)), we find that neither organic nor inorganic electrode-surface modifiers shift the conduction-band-edge energy sufficiently to account fully for the beneficial effects on electrode behavior (i.e., the suppression of dark current). Additional experiments reveal that the efficacy of ultrathin coatings of Al(2)O(3) arises chiefly from the passivation of redox-catalytic surface states. In contrast, adsorbed t-butylpyridine appears to suppress dark currents mainly by physically blocking access of shuttle molecules to the electrode surface. Studies with other derivatives of pyridine, including sterically and/or electronically diverse derivatives, show that heterocycle adsorption and the concomitant suppression of dark current does not require the coordination of surface Ti(IV) or Al(III) atoms. Notably, the favorable (i.e., negative) shifts in onset potential for the flow of dark current engendered by organic and inorganic surface modifiers are additive. Furthermore, they appear to be largely insensitive to the identity of shuttle molecules.

13.
Sensors (Basel) ; 12(3): 3669-92, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737031

RESUMO

A series of M[Au(CN)(2)](2)(analyte)(x) coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(µ-OH(2))[Au(CN)(2)](2) yielded visible vapochromic responses for M = Co but not M = Ni; the IR ν(CN) spectral region changed in every case. A single crystal structure of Zn[Au(CN)(2)](2)(DMSO)(2) revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)(2)] in DMSO yielded the isostructural Ni[Au(CN)(2)](2)(DMSO)(2) product. Co[Au(CN)(2)](2)(DMSO)(2) and M[Au(CN)(2)](2)(DMF)(2) (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(µ-OH(2))[Au(CN)(2)](2) and from DMSO or DMF solution synthesis. Co[Au(CN)(2)](2)(pyridine)(4) is generated via vapour absorption by Co(µ-OH(2))[Au(CN)(2)](2); the analogous Ni complex is synthesized by immersion of Ni(µ-OH(2))[Au(CN)(2)](2) in 4% aqueous pyridine. Similar immersion of Co(µ-OH(2))[Au(CN)(2)](2) yielded Co[Au(CN)(2)](2)(pyridine)(2), which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(µ-OH(2))[Au(CN)(2)](2) was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)(2)](2) was prepared by dehydration of Co(µ-OH(2))[Au(CN)(2)](2) at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate.

14.
Chemistry ; 17(13): 3609-18, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21344520

RESUMO

A series of lead(II) coordination polymers containing [N(CN)(2)](-) (DCA) or [Au(CN)(2)](-) bridging ligands and substituted terpyridine (terpy) ancillary ligands ([Pb(DCA)(2)] (1), [Pb(terpy)(DCA)(2)] (2), [Pb(terpy){Au(CN)(2)}(2)] (3), [Pb(4'-chloro-terpy){Au(CN)(2)}(2)] (4) and [Pb(4'-bromo-terpy)(µ-OH(2))(0.5){Au(CN)(2)}(2)] (5)) was spectroscopically examined by solid-state (207)Pb MAS NMR spectroscopy in order to characterise the structural and electronic changes associated with lead(II) lone-pair activity. Two new compounds, 2 and [Pb(4'-hydroxy-terpy){Au(CN)(2)}(2)] (6), were prepared and structurally characterised. The series displays contrasting coordination environments, bridging ligands with differing basicities and structural and electronic effects that occur with various substitutions on the terpyridine ligand (for the [Au(CN)(2)](-) polymers). (207)Pb NMR spectra show an increase in both isotropic chemical shift and span (Ω) with increasing ligand basicity (from δ(iso) = -3090 ppm and Ω = 389 ppm for 1 (the least basic) to δ(iso) = -1553 ppm and Ω = 2238 ppm for 3 (the most basic)). The trends observed in (207)Pb NMR data correlate with the coordination sphere anisotropy through comparison and quantification of the Pb-N bond lengths about the lead centre. Density functional theory calculations confirm that the more basic ligands result in greater p-orbital character and show a strong correlation to the (207)Pb NMR chemical shift parameters. Preliminary trends suggest that (207)Pb NMR chemical shift anisotropy relates to the measured birefringence, given the established correlations with structure and lone-pair activity.


Assuntos
Ouro/química , Chumbo/química , Polímeros/química , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular
15.
Inorg Chem ; 50(1): 231-7, 2011 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21141842

RESUMO

A series of d(10) dicyanometallate polymeric compounds were studied by electronic spectroscopy and density functional theory (DFT) calculations. In these materials, the negatively charged one-dimensional (1D) polymeric chains are linked together by [M(en)(2)](2+) (M = Cu(II) and Zn(II); en = ethylenediamine). More than innocent building blocks, the [M(en)(2)](2+) units offer a possible synthetic way to modify electronic properties of the materials. Through its low energy d-d excited state, the d(9) copper(II) ions offer deactivation pathways for the normally emissive dicyanometallate polymer. Deactivation was shown to be specific to the excited state energy.

16.
Beilstein J Org Chem ; 7: 1315-22, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22043241

RESUMO

A variety of ortho,ortho'-disubstituted hydrobenzoin derivatives are readily accessible through a directed ortho,ortho'-dimetalation strategy in which the alcohol functions in hydrobenzoin are deprotonated by n-BuLi and the resulting lithium benzyl alkoxides serve as directed metalation groups. The optimization and scope of this reaction are discussed, and the utility of this process is demonstrated in the one-pot preparation of a number of chiral diols as well as a short synthesis of the chiral ligand Vivol.

17.
J Am Chem Soc ; 131(51): 18435-44, 2009 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19954147

RESUMO

Four new coordination polymers, Mn(Clterpy)[Au(CN)(2)](2) (Clterpy = 4'-chloro-2,2';6',2''-terpyridine), Mn(Brterpy)[Au(CN)(2)](2) (Brterpy = 4'-bromo-2,2';6',2''-terpyridine), Pb(Clterpy)[Au(CN)(2)](2), and Pb(Brterpy)(mu-OH(2))(0.5)[Au(CN)(2)](2) were synthesized and structurally characterized, and their birefringence values were measured. The supramolecular structures of the two Mn(II) polymers are the same: they form one-dimensional (1D) chains of Mn(Xterpy)[Au(CN)(2)](2) units (X = Cl, Br), each having one bridging and one terminal Au(CN)(2)(-). The Pb(II) analogues form 1D polymers containing chains of Pb(Xterpy)[Au(CN)(2)](+) linked via Au(CN)(2)(-) units. Pb(Brterpy)(mu-OH(2))(0.5)[Au(CN)(2)](2) also contains a bridging water unit. In the plane of the primary crystal growth direction, the birefringence values of the four coordination polymers were found to be 0.378(19), 0.50(3), 0.38(2), and 0.26(3), respectively. The birefringence values are related to the supramolecular structures in terms of maximizing the alignment of the terpyridine-based units and the maximum off-axis positioning of the C-X bonds. With the exception of that for the Pb(Brterpy)(mu-OH(2))(0.5)[Au(CN)(2)](2) polymer, the birefringence values are either as large as or significantly larger than in the related M(2,2';6',2''-terpyridine)[Au(CN)(2)](2) systems. These polymers illustrate the utility of adding polarizable carbon-halogen bonds as a design element in highly birefringent coordination polymers.

18.
J Am Chem Soc ; 131(13): 4866-71, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19290631

RESUMO

Five isostructural dicyanometallate coordination polymers containing metallophilic interactions (In[M(CN)(2)](3) (M = Ag, Au), KCd[M(CN)(2)](3), and KNi[Au(CN)(2)](3)) were synthesized and investigated by variable-temperature powder X-ray diffraction to probe their thermal expansion properties. The compounds have a trigonal unit cell and show positive thermal expansion (PTE) in the ab plane, where Kagome sheets of M atoms reside, and negative thermal expansion (NTE) along the trigonal c axis, perpendicular to these sheets. The magnitude of thermal expansion is unusually large in all cases (40 x 10(-6) K(-1) < |alpha| < 110 x 10(-6) K(-1)). The system with the weakest metallophilic interactions, In[Ag(CN)(2)](3), shows the most "colossal" thermal expansion of the series (alpha(a) = 105(2) x 10(-6) K(-1), alpha(c) = -84(2) x 10(-6) K(-1) at 295 K), while systems containing stronger Au-Au interactions show relatively reduced thermal expansion. Thus, it appears that strong metallophilic interactions hinder colossal thermal expansion behavior. Additionally, the presence of K(+) counterions also reduces the magnitude of thermal expansion.

19.
Chem Sci ; 10(21): 5576-5581, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31293741

RESUMO

Nitrous acid (HONO) is a reservoir of NO x and an emerging pollutant having direct impacts on air quality, both in- and outdoors, as well as on human health. In this work, the amine-functionalized metal-organic framework (MOF), UiO-66-NH2, was investigated due to its potential to selectively decontaminate nitrous acid at environmentally relevant concentrations. UiO-66-NH2 proved to be effective in the removal of nitrous acid from a continuous gaseous stream. This is observed via the formation of an aryl diazonium salt that subsequently converts to a phenol with a concomitant release of nitrogen gas. This process is preceded via the formation of the nitrosonium cation (likely protonation from an acidic proton on the node). Thus, UiO-66-NH2 is capable of selectively converting the pollutant nitrous acid to benign products.

20.
ACS Appl Mater Interfaces ; 11(36): 32739-32745, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31414791

RESUMO

An innovative application of metal-organic frameworks (MOFs) is in biomedical materials. To treat bone demineralization, which is a hallmark of osteoporosis, biocompatible MOFs (bioMOFs) have been proposed in which various components, such as alkaline-earth cations and bisphosphonate molecules, can be delivered to maintain normal bone density. Multicomponent bioMOFs that release several components simultaneously at a controlled rate thus offer an attractive solution. We report two new bioMOFs, comprising strontium and calcium ions linked by p-xylylenebisphosphonate molecules that release these three components and display no cytotoxic effects on human osteosarcoma cells. Varying the Sr2+/Ca2+ ratio in these bioMOFs causes the rate of ions dissolving into simulated body fluid to be unique; along with the ability to adsorb proteins, this property is crucial for future efforts in drug-release control and promotion of mineral formation. The one-pot synthesis of these bioMOFs demonstrates the utility of MOF design strategies.


Assuntos
Biomineralização , Cálcio/química , Estruturas Metalorgânicas/química , Estrôncio/química , Linhagem Celular Tumoral , Difosfonatos/química , Humanos , Íons , Espectroscopia de Ressonância Magnética , Soroalbumina Bovina/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA