Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Conserv Biol ; 38(2): e14191, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38180844

RESUMO

Bird populations are declining globally. Wind and solar energy can reduce emissions of fossil fuels that drive anthropogenic climate change, yet renewable-energy production represents a potential threat to bird species. Surveys to assess potential effects at renewable-energy facilities are exclusively local, and the geographic extent encompassed by birds killed at these facilities is largely unknown, which creates challenges for minimizing and mitigating the population-level and cumulative effects of these fatalities. We performed geospatial analyses of stable hydrogen isotope data obtained from feathers of 871 individuals of 24 bird species found dead at solar- and wind-energy facilities in California (USA). Most species had individuals with a mix of origins, ranging from 23% to 98% nonlocal. Mean minimum distances to areas of likely origin for nonlocal individuals were as close as 97 to >1250 km, and these minimum distances were larger for species found at solar-energy facilities in deserts than at wind-energy facilities in grasslands (Cohen's d = 6.5). Fatalities were drawn from an estimated 30-100% of species' desingated ranges, and this percentage was significantly smaller for species with large ranges found at wind facilities (Pearson's r = -0.67). Temporal patterns in the geographic origin of fatalities suggested that migratory movements and nonmigratory movements, such as dispersal and nomadism, influence exposure to fatality risk for these birds. Our results illustrate the power of using stable isotope data to assess the geographic extent of renewable-energy fatalities on birds. As the buildout of renewable-energy facilities continues, accurate assessment of the geographic footprint of wildlife fatalities can be used to inform compensatory mitigation for their population-level and cumulative effects.


Extensión geográfica de las poblaciones de aves afectadas por desarrollos de energía renovable Resumen Las poblaciones mundiales de aves están en declive. Las energías solar y eólica pueden reducir las emisiones de combustibles fósiles que causan el cambio climático, aunque la producción de energías renovables representa una amenaza potencial para las aves. Los censos para evaluar los efectos potenciales en los centros de energía renovable son exclusivamente locales y se sabe poco sobre la extensión geográfica representada por las aves que mueren en estas instalaciones, lo que plantea obstáculos para mitigar los efectos acumulativos y de nivel poblacional de estas muertes. Realizamos análisis geoespaciales con datos del isótopo de hidrógeno estable obtenido de las plumas de 871 ejemplares de 24 especies de aves que fueron hallados muertos en los centros de energía solar y eólica en California, EE.UU. La mayoría de las especies contó con ejemplares de orígenes mixtos, con un rango del 23% al 98% no local. La media de la distancia mínima a las áreas de probable origen de los ejemplares no locales varía entre los 97 hasta > 1,250 km. Estas distancias mínimas fueron mayores para las especies encontradas en los centros de energía solar situadas en desiertos que para las especies encontradas en los centros de energía eólica localizadas en pastizales (d de Cohen = 6.5). Las muertes representan un 30­100% de la extensión de las especies. Este porcentaje fue significativamente menor para las especies con extensiones amplias encontradas en instalaciones eólicas (r de Pearson = ­0.67). Los patrones temporales en el origen geográfico de las muertes sugieren que los movimientos migratorios y no migratorios, como la dispersión y el nomadismo, influyen en la exposición de estas aves al riesgo de muerte. Nuestros resultados demuestran la utilidad de los isótopos estables para evaluar el alcance geográfico de las muertes de aves asociadas a energías renovables. Con el progresivo aumento de instalaciones de energía renovable, una evaluación precisa de la huella geográfica de la mortandad de fauna salvaje podrá guiar la mitigación compensatoria de sus efectos acumulativos y de nivel poblacional.


Assuntos
Conservação dos Recursos Naturais , Energia Renovável , Animais , Aves , Isótopos , Vento
2.
Ecol Appl ; 32(3): e2544, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080801

RESUMO

In the United States, the Bald and Golden Eagle Protection Act prohibits take of golden eagles (Aquila chrysaetos) unless authorized by permit, and stipulates that all permitted take must be sustainable. Golden eagles are unintentionally killed in conjunction with many lawful activities (e.g., electrocution on power poles, collision with wind turbines). Managers who issue permits for incidental take of golden eagles must determine allowable take levels and manage permitted take accordingly. To aid managers in making these decisions in the western United States, we used an integrated population model to obtain estimates of golden eagle vital rates and population size, and then used those estimates in a prescribed take level (PTL) model to estimate the allowable take level. Estimated mean annual survival rates for golden eagles ranged from 0.70 (95% credible interval = 0.66-0.74) for first-year birds to 0.90 (0.88-0.91) for adults. Models suggested a high proportion of adult female golden eagles attempted to breed and breeding pairs fledged a mean of 0.53 (0.39-0.72) young annually. Population size in the coterminous western United States has averaged ~31,800 individuals for several decades, with λ = 1.0 (0.96-1.05). The PTL model estimated a median allowable take limit of ~2227 (708-4182) individuals annually given a management objective of maintaining a stable population. We estimate that take averaged 2572 out of 4373 (59%) deaths annually, based on a representative sample of transmitter-tagged golden eagles. For the subset of golden eagles that were recovered and a cause of death determined, anthropogenic mortality accounted for an average of 74% of deaths after their first year; leading forms of take over all age classes were shooting (~670 per year), collisions (~611), electrocutions (~506), and poisoning (~427). Although observed take overlapped the credible interval of our allowable take estimate and the population overall has been stable, our findings indicate that additional take, unless mitigated for, may not be sustainable. Our analysis demonstrates the utility of the joint application of integrated population and prescribed take level models to management of incidental take of a protected species.


Assuntos
Águias , Fatores Etários , Animais , Causas de Morte , Feminino , Humanos , Propilaminas , Sulfetos , Taxa de Sobrevida , Estados Unidos
3.
Conserv Biol ; 36(6): e13988, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35979694

RESUMO

Open-source intelligence (OSINT) evolved in spy agencies but now is rapidly changing many fields of study, from anthropology to zoology. Despite the fact that OSINT occasionally is used in conservation biology, there is little recognition that some tools and frameworks used by conservation professionals are drawn from this well-established field. In conservation biology, OSINT is sometimes used to evaluate wildlife crime, human-wildlife and human-environment interactions, animal behavior, and questions of distribution and abundance. Recognizing the conceptual foundations of the field would allow expansion of conservation biology, not only in the areas noted above, but also, for example, in study of habitat use, habitat change, and animal behavior. This recognition would also provide frameworks for conceptual advancement, especially in terms of data and privacy management. Failure to recognize the underpinnings of OSINT tools in conservation biology harms the field because it limits how research is framed, thought about, and implemented. Likewise, taking an OSINT perspective to conservation problems, rather than simply thinking in terms of big data, can enrich the field, expand science, and increase knowledge and understanding of biology and biodiversity.


La inteligencia de fuente abierta (INTFA) surgió en las agencias de espionaje y en la actualidad está modificando rápidamente muchos campos de estudio, desde la antropología hasta la zoología. A pesar de que se usa ocasionalmente en la biología de la conservación, pocos reconocen que algunas herramientas y marcos de trabajo usados por los profesionales de la conservación tienen su origen en este campo tan bien establecido. En la biología de la conservación, la INTFA a veces se usa para evaluar crímenes contra la fauna, las interacciones humano-fauna y humano ambiente, el comportamiento animal y las cuestiones de distribución y abundancia. Si se reconocen los fundamentos conceptuales del campo, se podría expandir la biología de la conservación, no sólo en los temas antes mencionados, sino también en los estudios del uso de hábitat, el cambio de hábitat y el comportamiento animal, por ejemplo. Este reconocimiento también proporcionaría marcos de trabajo para el desarrollo conceptual, especialmente en términos de datos y manejo de la privacidad. Si no se reconoce la INTFA subyacente en las herramientas de la biología de la conservación, se le causa daño al campo de estudio porque limita cómo se enmarca, se piensa y se implementa la investigación. De igual manera, adoptar una perspectiva de INTFA para los problemas de la conservación, en lugar de sólo pensar en términos de los macrodatos, puede enriquecer el campo de investigación, expandir la ciencia e incrementar el conocimiento y entendimiento de la biología y la biodiversidad.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Humanos , Biologia , Ecossistema , Software
4.
Glob Chang Biol ; 27(14): 3383-3394, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894030

RESUMO

Scavenging is an important function within ecosystems where scavengers remove organic matter, reduce disease, stabilize food webs, and generally make ecosystems more resilient to environmental changes. Global change (i.e., changing climate and increasing human impact) is currently influencing scavenger communities. Thus, understanding what promotes species richness in scavenger communities can help prioritize management actions. Using a long-term dataset from camera traps deployed with animal carcasses as bait along a 1881 km latitudinal gradient in the Appalachian Mountains of eastern USA, we investigated the relative impact of climate and humans on the species richness and diversity of vertebrate scavengers. Our most supported models for both mammalian and avian scavengers included climatic, but not human, variables. The richness of mammalian and avian scavengers detected was highest during relatively warm (5-10°C) and dry (100-150 mm precipitation) winters, when food was likely limited and both reliance on and detection of carrion was high. The diversity of mammalian and avian scavengers detected was highest under drier conditions. We then used these results to project the future species richness of scavengers that would be detected within our sampling area and under the climate scenario of 2070 (emissions level RCP8.5). Our predictions suggest up to 80% and 67% reductions, respectively, in the richness of avian and mammalian scavengers that would be detected at baited sites. Climate-induced shifts in behavior (i.e., reduction in scavenging, even if present) at this scale could have cascading implications for ecosystem function, resilience, and human health. Further, our study highlights the importance of conducting studies of scavenger community dynamics within ecosystems across wide spatial gradients within temperate environments. More broadly, these findings build upon our understanding of the impacts of climate-induced adjustments in behavior that can likely have negative impacts on systems at a large scale.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Região dos Apalaches , Biodiversidade , Humanos , América do Norte , Vertebrados
5.
Conserv Biol ; 35(1): 64-76, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31913528

RESUMO

Increasing global energy demand is fostering the development of renewable energy as an alternative to fossil fuels. However, renewable energy facilities may adversely affect wildlife. Facility siting guidelines recommend or require project developers complete pre- and postconstruction wildlife surveys to predict risk and estimate effects of proposed projects. Despite this, there are no published studies that have quantified the types of surveys used or how survey types are standardized within and across facilities. We evaluated 628 peer-reviewed publications, unpublished reports, and citations, and we analyzed data from 525 of these sources (203 facilities: 193 wind and 10 solar) in the United States and Canada to determine the frequency of pre- and postconstruction surveys and whether that frequency changed over time; frequency of studies explicitly designed to allow before-after or impact-control analyses; and what types of survey data were collected during pre- and postconstruction periods and how those data types were standardized across periods and among facilities. Within our data set, postconstruction monitoring for wildlife fatalities and habitat use was a standard practice (n = 446 reports), but preconstruction estimation of baseline wildlife habitat use and mortality was less frequently reported (n = 84). Only 22% (n = 45) of the 203 facilities provided data from both pre- and postconstruction, and 29% (n = 59) had experimental study designs. Of 108 facilities at which habitat-use surveys were conducted, only 3% estimated of detection probability. Thus, the available data generally preclude comparison of biological data across construction periods and among facilities. Use of experimental study designs and following similar field protocols would improve the knowledge of how renewable energy affects wildlife. Article Impact Statement Many surveys at wind and solar facilities provide limited information on wildlife use and fatality rates.


Limitaciones, Falta de Estandarización y las Mejores Prácticas Recomendadas en Estudios de los Efectos de las Energías Renovables sobre las Aves y los Murciélagos Resumen La creciente demanda global por energía está fomentando el desarrollo de energías renovables como una alternativa a los combustibles fósiles. Sin embargo, las instalaciones de energías renovables pueden afectar de manera adversa a la fauna. Las pautas para la ubicación de dichas instalaciones recomiendan o requieren que los desarrolladores de los proyectos realicen censos previa y posteriormente a la construcción de las instalaciones para pronosticar el riesgo y estimar los efectos de los proyectos propuestos. A pesar de esto, no existen estudios publicados que hayan cuantificado los tipos de censo usados o cómo los tipos de censo están estandarizados para las instalaciones en específico y en general. Evaluamos 628 publicaciones revisadas por pares, reportes sin publicar y referencias y analizamos los datos de 525 de estas fuentes (203 instalaciones: 193 de energía eólica y 10 de energía solar) en los Estados Unidos y Canadá para determinar la frecuencia de los censos previos y posteriores a la construcción y si dicha frecuencia cambió con el tiempo; para determinar la frecuencia de los estudios diseñados explícitamente para permitir los análisis antes-y-después o de control-impacto; y para determinar cuáles tipos de datos fueron recolectados previa y posteriormente a la construcción y cómo aquellos tipos de datos estuvieron estandarizados a través de los periodos y entre las instalaciones. Dentro de nuestro conjunto de datos, el monitoreo posterior a la construcción de las fatalidades faunísticas y el uso de hábitat fue una práctica común (n = 446 reportes), pero la estimación previa a la construcción de la línea base del uso de hábitat por la fauna y la mortalidad estuvo reportada con menor frecuencia (n = 84). Sólo el 22% (n = 45) de las 203 instalaciones proporcionaron datos de los censos previos y posteriores a la construcción y el 29% (n = 59) contó con diseño de estudios experimentales. De las 108 instalaciones en las que se realizaron censos de uso de hábitat, sólo el 3% incluyó la estimación de la probabilidad de detección. Por lo tanto, los datos disponibles generalmente impiden la comparación de los datos biológicos durante los periodos de construcción y entre las instalaciones. El uso del diseño de estudios experimentales y el seguimiento de protocolos de campo similares mejoraría el conocimiento sobre cómo las energías renovables afectan a la fauna.


Assuntos
Quirópteros , Animais , Aves , Canadá , Conservação dos Recursos Naturais , Padrões de Referência , Energia Renovável , Vento
6.
Arch Environ Contam Toxicol ; 79(4): 454-460, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33140186

RESUMO

Anticoagulant rodenticides (ARs) are commonly used to control rodent pests. However, worldwide, their use is associated with secondary and tertiary poisoning of nontarget species, especially predatory and scavenging birds. No medical device can rapidly test for AR exposure of avian wildlife. Prothrombin time (PT) is a useful biomarker for AR exposure, and multiple commercially available point-of-care (POC) devices measure PT of humans, and domestic and companion mammals. We evaluated the potential of one commercially available POC device, the Coag-Sense® PT/INR Monitoring System, to rapidly detect AR exposure of living birds of prey. The Coag-Sense device delivered repeatable PT measurements on avian blood samples collected from four species of raptors trapped during migration (Intraclass Correlation Coefficient > 0.9; overall intra-sample variation CV: 5.7%). However, PT measurements reported by the Coag-Sense system from 81 ferruginous hawk (Buteo regalis) nestlings were not correlated to those measured by a one-stage laboratory avian PT assay (r = - 0.017, p = 0.88). Although precise, the lack of agreement in PT estimates from the Coag-Sense device and the laboratory assay indicates that this device is not suitable for detecting potential AR exposure of birds of prey. The lack of suitability may be related to the use of a mammalian reagent in the clotting reaction, suggesting that the device may perform better in testing mammalian wildlife.


Assuntos
Anticoagulantes/metabolismo , Monitoramento Ambiental , Aves Predatórias/metabolismo , Rodenticidas/metabolismo , Animais , Anticoagulantes/intoxicação , Aves , Humanos , Fígado , Comportamento Predatório , Rodenticidas/intoxicação
7.
J Hered ; 110(6): 696-706, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31414124

RESUMO

Viability selection yields adult populations that are more genetically variable than those of juveniles, producing a positive correlation between heterozygosity and survival. Viability selection could be the result of decreased heterozygosity across many loci in inbred individuals and a subsequent decrease in survivorship resulting from the expression of the deleterious alleles. Alternatively, locus-specific differences in genetic variability between adults and juveniles may be driven by forms of balancing selection, including heterozygote advantage, frequency-dependent selection, or selection across temporal and spatial scales. We use a pooled-sequencing approach to compare genome-wide and locus-specific genetic variability between 74 golden eagle (Aquila chrysaetos), 62 imperial eagle (Aquila heliaca), and 69 prairie falcon (Falco mexicanus) juveniles and adults. Although genome-wide genetic variability is comparable between juvenile and adult golden eagles and prairie falcons, imperial eagle adults are significantly more heterozygous than juveniles. This evidence of viability selection may stem from a relatively smaller imperial eagle effective population size and potentially greater genetic load. We additionally identify ~2000 single-nucleotide polymorphisms across the 3 species with extreme differences in heterozygosity between juveniles and adults. Many of these markers are associated with genes implicated in immune function or olfaction. These loci represent potential targets for studies of how heterozygote advantage, frequency-dependent selection, and selection over spatial and temporal scales influence survivorship in avian species. Overall, our genome-wide data extend previous studies that used allozyme or microsatellite markers and indicate that viability selection may be a more common evolutionary phenomenon than often appreciated.


Assuntos
Águias/genética , Variação Genética , Heterozigoto , Seleção Genética , Fatores Etários , Alelos , Animais , Biologia Computacional/métodos , Frequência do Gene , Anotação de Sequência Molecular , Locos de Características Quantitativas , Sequenciamento Completo do Genoma
8.
Bull Environ Contam Toxicol ; 103(6): 783-788, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31646347

RESUMO

Lead is toxic to humans and wildlife. Most studies of lead exposure of raptors focus on the winter, non-breeding season when they scavenge heavily. We evaluated blood lead concentrations (BLCs) of red-shouldered hawks (Buteo lineatus) during the non-scavenging season in the eastern United States. BLCs of 53 of 70 hawks were above the limit of detection ([Formula: see text] = 9.25 µg/dL ± 19.81; ± SD). Adult hawks had higher BLCs ([Formula: see text] = 12.86 µg/dL ± 24.72) than did nestlings ([Formula: see text] = 3.25 µg/dL ± 2.62; p ≤ 0.001, χ2 = 13.2). There was no difference in BLCs of adult hawks among physiographic provinces but there were differences between urban and non-urban settings (p = 0.04, χ2 = 4.2). Soils and invertebrate hawk prey also had quantifiable lead concentrations. Our work shows that red-shouldered hawks are exposed to lead when not scavenging, and suggests pathways by which these birds may be exposed.


Assuntos
Cruzamento , Exposição Ambiental/análise , Poluentes Ambientais/sangue , Falcões/sangue , Chumbo/sangue , Animais , Animais Selvagens , Região dos Apalaches , Estações do Ano , Estados Unidos
9.
BMC Genomics ; 19(1): 233, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618317

RESUMO

BACKGROUND: Management requires a robust understanding of between- and within-species genetic variability, however such data are still lacking in many species. For example, although multiple population genetics studies of the peregrine falcon (Falco peregrinus) have been conducted, no similar studies have been done of the closely-related prairie falcon (F. mexicanus) and it is unclear how much genetic variation and population structure exists across the species' range. Furthermore, the phylogenetic relationship of F. mexicanus relative to other falcon species is contested. We utilized a genomics approach (i.e., genome sequencing and assembly followed by single nucleotide polymorphism genotyping) to rapidly address these gaps in knowledge. RESULTS: We sequenced the genome of a single female prairie falcon and generated a 1.17 Gb (gigabases) draft genome assembly. We generated maximum likelihood phylogenetic trees using complete mitochondrial genomes as well as nuclear protein-coding genes. This process provided evidence that F. mexicanus is an outgroup to the clade that includes the peregrine falcon and members of the subgenus Hierofalco. We annotated > 16,000 genes and almost 600,000 high-quality single nucleotide polymorphisms (SNPs) in the nuclear genome, providing the raw material for a SNP assay design featuring > 140 gene-associated markers and a molecular-sexing marker. We subsequently genotyped ~ 100 individuals from California (including the San Francisco East Bay Area, Pinnacles National Park and the Mojave Desert) and Idaho (Snake River Birds of Prey National Conservation Area). We tested for population structure and found evidence that individuals sampled in California and Idaho represent a single panmictic population. CONCLUSIONS: Our study illustrates how genomic resources can rapidly shed light on genetic variability in understudied species and resolve phylogenetic relationships. Furthermore, we found evidence of a single, randomly mating population of prairie falcons across our sampling locations. Prairie falcons are highly mobile and relatively rare long-distance dispersal events may promote gene flow throughout the range. As such, California's prairie falcons might be managed as a single population, indicating that management actions undertaken to benefit the species at the local level have the potential to influence the species as a whole.


Assuntos
Proteínas Aviárias/genética , Falconiformes/classificação , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/veterinária , Animais , California , Falconiformes/genética , Feminino , Genética Populacional , Idaho , Mitocôndrias/genética , Filogenia , Filogeografia
10.
Rapid Commun Mass Spectrom ; 32(21): 1859-1866, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30076636

RESUMO

RATIONALE: Stable hydrogen isotope (δ2 H) ratios of animal tissues are useful for assessing movement and geographic origin of mobile organisms. However, it is uncertain whether heat and singeing affects feather δ2 H values and thus subsequent geographic assignments. This is relevant for birds of conservation interest that are burned and killed at concentrating solar-energy facilities that reflect sunlight to a receiving tower and generate a solar flux field. METHODS: We used a controlled experiment to test the effect of known heat loads (exposure to 200, 250 or 300°C for 1 min) on the morphology and δ2 H values of feathers from two songbird species. Subsequently, we examined the effects of singeing on δ2 H values of feathers from three other songbird species that were found dead in the field at a concentrating solar-energy facility. RESULTS: Relative to control samples, heating caused visual morphological changes to feathers, including shriveling at 250°C and charring at 300°C. The δ2 H values significantly declined by a mean of 27.8‰ in experimental samples exposed to 300°C. There was no statistically detectable difference between δ2 H values of the singed and unsinged portions of field-collected feathers from the same bird. CONCLUSIONS: Limited singeing that did not dramatically alter the feather morphology did not substantially affect δ2 H values of feathers from these songbirds. However, higher temperatures induced charring and reduced δ2 H values. Therefore, severely charred feathers should be avoided when selecting feathers for δ2 H-based assessment of geographic origin.


Assuntos
Deutério/análise , Plumas/química , Plumas/efeitos da radiação , Aves Canoras/fisiologia , Migração Animal/fisiologia , Animais , Temperatura Alta , Espectrometria de Massas/métodos
11.
J Avian Med Surg ; 32(1): 34-39, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29698079

RESUMO

A male juvenile bald eagle ( Haliaeetus leucocephalus) was admitted to the Wildlife Center of Virginia with a left humeral fracture a large quantity of anthropogenic debris in the ventriculus, a blood lead level of 0.616 ppm, and clinical signs consistent with chronic lead toxicosis. Because of the poor prognosis for recovery and release, the eagle was euthanatized. Lead isotope analysis was performed to identify potential anthropogenic sources of lead in this bird. The lead isotope ratios in the eagle's femur (0.8773), liver (0.8761), and kidneys (0.8686) were most closely related to lead paint (0.8925), leaded gasoline (0.8450), and zinc smelting (0.8240). The lead isotope ratios were dissimilar to lead ammunition (0.8179) and the anthropogenic debris in the ventriculus. This case report documents foreign body ingestion in a free-ranging bald eagle and demonstrates the clinical utility of lead isotope analysis to potentially identify or exclude anthropogenic sources of lead poisoning in wildlife patients.


Assuntos
Doenças das Aves/induzido quimicamente , Águias , Corpos Estranhos/veterinária , Moela das Aves , Intoxicação por Chumbo/veterinária , Chumbo/análise , Animais , Doenças das Aves/diagnóstico , Fêmur/química , Corpos Estranhos/etiologia , Fraturas Ósseas/complicações , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/veterinária , Úmero/lesões , Isótopos/análise , Rim/química , Intoxicação por Chumbo/etiologia , Fígado/química , Masculino , Espectrometria de Massas/veterinária
12.
Conserv Biol ; 31(2): 406-415, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27677518

RESUMO

Renewable energy production is expanding rapidly despite mostly unknown environmental effects on wildlife and habitats. We used genetic and stable isotope data collected from Golden Eagles (Aquila chrysaetos) killed at the Altamont Pass Wind Resource Area (APWRA) in California in demographic models to test hypotheses about the geographic extent and demographic consequences of fatalities caused by renewable energy facilities. Geospatial analyses of δ2 H values obtained from feathers showed that ≥25% of these APWRA-killed eagles were recent immigrants to the population, most from long distances away (>100 km). Data from nuclear genes indicated this subset of immigrant eagles was genetically similar to birds identified as locals from the δ2 H data. Demographic models implied that in the face of this mortality, the apparent stability of the local Golden Eagle population was maintained by continental-scale immigration. These analyses demonstrate that ecosystem management decisions concerning the effects of local-scale renewable energy can have continental-scale consequences.


Assuntos
Conservação dos Recursos Naturais , Águias , Vento , Animais , California , Plumas , Dinâmica Populacional , Energia Renovável
13.
Environ Monit Assess ; 189(4): 139, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28251454

RESUMO

Avian scavengers are regularly exposed to anthropogenic lead. Although many studies evaluate lead concentrations of either blood or tissues of lead-poisoned birds, there is comparatively less research on lead burdens of free-flying, apparently healthy individuals and populations. Here, we address this lack of information by assessing lead levels of multiple tissues (femur, liver, kidney, breast muscle, thigh muscle) in free-flying black vultures (n = 98) and turkey vultures (n = 10) collected outside the hunting season. We found only one individual had a soft tissue lead concentration indicative of acute exposure (6.17 mg/kg wet weight in the liver), while the other 107 vultures showed consistent low-level lead exposure throughout the soft tissues. All vultures, however, had femur lead concentrations indicative of chronic lead exposure (black vultures [Formula: see text]31.80 ± 20.42 mg/kg (±SD); turkey vultures 23.21 ± 18.77 mg/kg). Lead levels were similar in all tissues in both vulture species (in each case, p > 0.05) and were generally highest in the femur, intermediate in the kidney and liver, and lowest in the breast and thigh muscle. Despite the consistency of these patterns, there were few strong correlations between lead levels in different tissues within each species, and those correlations that did exist were not consistent between species. Because these vultures were free flying and apparently healthy, the organism-wide lead distributions and between-species trends we report here provide important insight into the sublethal lead burdens that black vultures and turkey vultures commonly carry. Furthermore, these data offer a framework to better interpret and contextualize lead exposure data collected from these and other species.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/metabolismo , Falconiformes/metabolismo , Chumbo/metabolismo , Animais , Comportamento Alimentar , Cadeia Alimentar , Especificidade da Espécie , Distribuição Tecidual , Virginia
14.
Conserv Biol ; 28(3): 745-55, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24405249

RESUMO

When wildlife habitat overlaps with industrial development animals may be harmed. Because wildlife and people select resources to maximize biological fitness and economic return, respectively, we estimated risk, the probability of eagles encountering and being affected by turbines, by overlaying models of resource selection for each entity. This conceptual framework can be applied across multiple spatial scales to understand and mitigate impacts of industry on wildlife. We estimated risk to Golden Eagles (Aquila chrysaetos) from wind energy development in 3 topographically distinct regions of the central Appalachian Mountains of Pennsylvania (United States) based on models of resource selection of wind facilities (n = 43) and of northbound migrating eagles (n = 30). Risk to eagles from wind energy was greatest in the Ridge and Valley region; all 24 eagles that passed through that region used the highest risk landscapes at least once during low altitude flight. In contrast, only half of the birds that entered the Allegheny Plateau region used highest risk landscapes and none did in the Allegheny Mountains. Likewise, in the Allegheny Mountains, the majority of wind turbines (56%) were situated in poor eagle habitat; thus, risk to eagles is lower there than in the Ridge and Valley, where only 1% of turbines are in poor eagle habitat. Risk within individual facilities was extremely variable; on average, facilities had 11% (SD 23; range = 0-100%) of turbines in highest risk landscapes and 26% (SD 30; range = 0-85%) of turbines in the lowest risk landscapes. Our results provide a mechanism for relocating high-risk turbines, and they show the feasibility of this novel and highly adaptable framework for managing risk of harm to wildlife from industrial development.


Assuntos
Migração Animal , Conservação dos Recursos Naturais , Águias/fisiologia , Modelos Teóricos , Energia Renovável/normas , Vento , Animais , Geografia , Pennsylvania , Medição de Risco
15.
Artigo em Inglês | MEDLINE | ID: mdl-38693847

RESUMO

Lead poisoning is an important global conservation problem for many species of wildlife, especially raptors. Despite the increasing number of individual studies and regional reviews of lead poisoning of raptors, it has been over a decade since this information has been compiled into a comprehensive global review. Here, we summarize the state of knowledge of lead poisoning of raptors, we review developments in manufacturing of non-lead ammunition, the use of which can reduce the most pervasive source of lead these birds encounter, and we compile data on voluntary and regulatory mitigation options and their associated sociological context. We support our literature review with case studies of mitigation actions, largely provided by the conservation practitioners who study or manage these efforts. Our review illustrates the growing awareness and understanding of lead exposure of raptors, and it shows that the science underpinning this understanding has expanded considerably in recent years. We also show that the political and social appetite for managing lead ammunition appears to vary substantially across administrative regions, countries, and continents. Improved understanding of the drivers of this variation could support more effective mitigation of lead exposure of wildlife. This review also shows that mitigation strategies are likely to be most effective when they are outcome driven, consider behavioural theory, local cultures, and environmental conditions, effectively monitor participation, compliance, and levels of raptor exposure, and support both environmental and human health.

16.
PLoS One ; 19(1): e0297345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38295117

RESUMO

Wildlife conservation strategies focused on one season or population segment may fail to adequately protect populations, especially when a species' habitat preferences vary among seasons, age-classes, geographic regions, or other factors. Conservation of golden eagles (Aquila chrysaetos) is an example of such a complex scenario, in which the distribution, habitat use, and migratory strategies of this species of conservation concern vary by age-class, reproductive status, region, and season. Nonetheless, research aimed at mapping priority use areas to inform management of golden eagles in western North America has typically focused on territory-holding adults during the breeding period, largely to the exclusion of other seasons and life-history groups. To support population-wide conservation planning across the full annual cycle for golden eagles, we developed a distribution model for individuals in a season not typically evaluated-winter-and in an area of the interior western U.S. that is a high priority for conservation of the species. We used a large GPS-telemetry dataset and library of environmental variables to develop a machine-learning model to predict spatial variation in the relative intensity of use by golden eagles during winter in Wyoming, USA, and surrounding ecoregions. Based on a rigorous series of evaluations including cross-validation, withheld and independent data, our winter-season model accurately predicted spatial variation in intensity of use by multiple age- and life-history groups of eagles not associated with nesting territories (i.e., all age classes of long-distance migrants, and resident non-adults and adult "floaters", and movements of adult territory holders and their offspring outside their breeding territories). Important predictors in the model were wind and uplift (40.2% contribution), vegetation and landcover (27.9%), topography (14%), climate and weather (9.4%), and ecoregion (8.7%). Predicted areas of high-use winter habitat had relatively low spatial overlap with nesting habitat, suggesting a conservation strategy targeting high-use areas for one season would capture as much as half and as little as one quarter of high-use areas for the other season. The majority of predicted high-use habitat (top 10% quantile) occurred on private lands (55%); lands managed by states and the Bureau of Land Management (BLM) had a lower amount (33%), but higher concentration of high-use habitat than expected for their area (1.5-1.6x). These results will enable those involved in conservation and management of golden eagles in our study region to incorporate spatial prioritization of wintering habitat into their existing regulatory processes, land-use planning tasks, and conservation actions.


Assuntos
Águias , Propilaminas , Sulfetos , Humanos , Animais , Estações do Ano , Conservação dos Recursos Naturais/métodos , América do Norte
17.
PLoS One ; 18(12): e0295552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38100470

RESUMO

Increased interest in renewable energy has fostered development of wind and solar energy facilities globally. However, energy development sometimes has negative environmental impacts, such as wildlife fatalities. Efforts by regional land managers to balance energy potential while minimizing fatality risk currently rely on datasets that are aggregated at continental, but not regional scales, that focus on single species, or that implement meta-analyses that inappropriately use inferential statistics. We compiled and summarized fatality data from 87 reports for solar and wind facilities in the Mojave and Sonoran Deserts region of southern California within the Desert Renewable Energy Conservation Plan area. Our goal was to evaluate potential temporal and guild-specific patterns in fatalities, especially for priority species of conservation concern. We also aimed to provide a perspective on approaches interpreting these types of data, given inherent limitations in how they were collected. Mourning doves (Zenaida macroura), Chukar (Alectoris chukar) and California Quail (Callipepla californica), and passerines (Passeriformes), accounted for the most commonly reported fatalities. However, our aggregated count data were derived from raw, uncorrected totals, and thus reflect an absolute minimum number of fatalities for the monitored period. Additionally, patterns in the raw data suggested that many species commonly documented as fatalities (e.g., waterbirds and other nocturnal migrants, bats) are rarely counted during typical pre-construction use surveys. This may explain the more commonly observed mismatch between pre-construction risk assessment and actual fatalities. Our work may serve to guide design of future scientific research to address temporal and spatial patterns in fatalities and to apply rigorous guild-specific survey methodologies to estimate populations at risk from renewable energy development.


Assuntos
Quirópteros , Energia Solar , Animais , Animais Selvagens , Conservação dos Recursos Naturais/métodos , Energia Renovável , Vento
18.
Ecol Evol ; 13(5): e10035, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206689

RESUMO

Sophisticated animal-borne sensor systems are increasingly providing novel insight into how animals behave and move. Despite their widespread use in ecology, the diversity and expanding quality and quantity of data they produce have created a need for robust analytical methods for biological interpretation. Machine learning tools are often used to meet this need. However, their relative effectiveness is not well known and, in the case of unsupervised tools, given that they do not use validation data, their accuracy can be difficult to assess. We evaluated the effectiveness of supervised (n = 6), semi-supervised (n = 1), and unsupervised (n = 2) approaches to analyzing accelerometry data collected from critically endangered California condors (Gymnogyps californianus). Unsupervised K-means and EM (expectation-maximization) clustering approaches performed poorly, with adequate classification accuracies of <0.8 but very low values for kappa statistics (range: -0.02 to 0.06). The semi-supervised nearest mean classifier was moderately effective at classification, with an overall classification accuracy of 0.61 but effective classification only of two of the four behavioral classes. Supervised random forest (RF) and k-nearest neighbor (kNN) machine learning models were most effective at classification across all behavior types, with overall accuracies >0.81. Kappa statistics were also highest for RF and kNN, in most cases substantially greater than for other modeling approaches. Unsupervised modeling, which is commonly used for the classification of a priori-defined behaviors in telemetry data, can provide useful information but likely is instead better suited to post hoc definition of generalized behavioral states. This work also shows the potential for substantial variation in classification accuracy among different machine learning approaches and among different metrics of accuracy. As such, when analyzing biotelemetry data, best practices appear to call for the evaluation of several machine learning techniques and several measures of accuracy for each dataset under consideration.

19.
iScience ; 26(8): 107274, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37609628

RESUMO

Human actions, both legal and illegal, affect wildlife in many ways. Inaccurate diagnosis of cause of death undermines law enforcement, management, threat assessment, and mitigation. We found 410 dead birds collected along 196 km of power lines in four western USA states during 2019-2022. We necropsied these carcasses to test conventional wisdom suggesting that electrocution is the leading cause of death of birds at electrical infrastructure. Of 175 birds with a known cause of death, 66% died from gunshot. Both raptors and corvids were more likely to die from gunshot than from other causes, along both transmission and distribution lines. Past mitigation to reduce avian deaths along power lines has focused almost exclusively on reducing electrocutions or collisions. Our work suggests that, although electrocution and collision remain important, addressing illegal shooting now may have greater relevance for avian conservation.

20.
PeerJ ; 11: e16580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084143

RESUMO

Background: Operation of wind turbines has resulted in collision fatalities for several bat species, and one proven method to reduce these fatalities is to limit wind turbine blade rotation (i.e., curtail turbines) when fatalities are expected to be highest. Implementation of curtailment can potentially be optimized by targeting times when females are most at risk, as the proportion of females limits the growth and stability of many bat populations. The Brazilian free-tailed bat (Tadarida brasiliensis) is the most common bat fatality at wind energy facilities in California and Texas, and yet there are few available data on the sex ratios of the carcasses that are found. Understanding the sex ratios of fatalities in California and Texas could aid in planning population conservation strategies such as informed curtailment. Methods: We used PCR to determine the sex of bat carcasses collected from wind energy facilities during post-construction monitoring (PCM) studies in California and Texas. In California, we received samples from two locations within the Altamont Pass Wind Resource Area in Alameda County: Golden Hills (GH) (n = 212) and Golden Hills North (GHN) (n = 312). In Texas, we received samples from three wind energy facilities: Los Mirasoles (LM) (Hidalgo County and Starr County) (n = 252), Los Vientos (LV) (Starr County) (n = 568), and Wind Farm A (WFA) (San Patricio County and Bee County) (n = 393). Results: In California, the sex ratios of fatalities did not differ from 50:50, and the sex ratio remained stable over the survey years, but the seasonal timing of peak fatalities was inconsistent. In 2017 and 2018, fatalities peaked between September and October, whereas in 2019 and 2020 fatalities peaked between May and June. In Texas, sex ratios of fatalities varied between locations, with Los Vientos being female-skewed and Wind Farm A being male-skewed. The sex ratio of fatalities was also inconsistent over time. Lastly, for each location in Texas with multiple years studied, we observed a decrease in the proportion of female fatalities over time. Discussion: We observed unexpected variation in the seasonal timing of peak fatalities in California and differences in the sex ratio of fatalities across time and facility location in Texas. In Texas, proximity to different roost types (bridge or cave) likely influenced the sex ratio of fatalities at wind energy facilities. Due to the inconsistencies in the timing of peak female fatalities, we were unable to determine an optimum curtailment period; however, there may be location-specific trends that warrant future investigation. More research should be done over the entirety of the bat active season to better understand these trends in Texas. In addition, standardization of PCM studies could assist future research efforts, enhance current monitoring efforts, and facilitate research on post-construction monitoring studies.


Assuntos
Quirópteros , Energia Renovável , Feminino , Masculino , Animais , Razão de Masculinidade , Texas/epidemiologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA