Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Bioorg Med Chem Lett ; 29(16): 2229-2235, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31248772

RESUMO

Prostate cancer (PC) is the second most commonly occurring cancer in men. Conventional chemotherapy has wide variety of disadvantages such as high systemic toxicity and low selectivity. Targeted drug delivery is a promising approach to decrease side effects of therapy. Prostate specific membrane antigen (PSMA) is overexpressed in prostate cancer cells while low level of expression is observed in normal cells. In this study we describe the development of Glu-urea-Lys based PSMA-targeting conjugates with paclitaxel. A series of new PSMA targeting conjugates with paclitaxel was designed and synthesized. The cytotoxicity of conjugates was evaluated against prostate (LNCaP, 22Rv1 and PC-3) and non-prostate (Hek293T, VA13, A549 and MCF-7) cell lines. The most promising conjugate 21 was examined in vivo using 22Rv1 xenograft mice model. It demonstrated good efficiency comparable with paclitaxel, while reduced toxicity. 3D molecular docking study was also performed to understand underlying mechanism of binding and further optimization of the linker substructure and conjugates structure for improving the target affinity. These conjugates may be useful for further design of novel PSMA targeting delivery systems for PC.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Paclitaxel/síntese química , Neoplasias da Próstata/tratamento farmacológico , Animais , Humanos , Masculino , Camundongos
2.
Nat Commun ; 13(1): 276, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022401

RESUMO

Proteasomes are present in eukaryotes, archaea and Actinobacteria, including the human pathogen Mycobacterium tuberculosis, where proteasomal degradation supports persistence inside the host. In mycobacteria and other members of Actinobacteria, prokaryotic ubiquitin-like protein (Pup) serves as a degradation tag post-translationally conjugated to target proteins for their recruitment to the mycobacterial proteasome ATPase (Mpa). Here, we use single-particle cryo-electron microscopy to determine the structure of Mpa in complex with the 20S core particle at an early stage of pupylated substrate recruitment, shedding light on the mechanism of substrate translocation. Two conformational states of Mpa show how substrate is translocated stepwise towards the degradation chamber of the proteasome core particle. We also demonstrate, in vitro and in vivo, the importance of a structural feature in Mpa that allows formation of alternating charge-complementary interactions with the proteasome resulting in radial, rail-guided movements during the ATPase conformational cycle.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Células Procarióticas/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/química , Ubiquitinas/metabolismo , Actinobacteria/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo
3.
Structure ; 29(4): 320-329.e4, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33275877

RESUMO

Integrin activation controls cell adhesion, migration, invasion, and extracellular matrix remodeling. RIAM (RAP1-GTP-interacting adaptor molecule) is recruited by activated RAP1 to the plasma membrane (PM) to mediate integrin activation via an inside-out signaling pathway. This process requires the association of the pleckstrin homology (PH) domain of RIAM with the membrane PIP2. We identify a conserved intermolecular interface that masks the PIP2-binding site in the PH domains of RIAM. Our data indicate that phosphorylation of RIAM by Src family kinases disrupts this PH-mediated interface, unmasks the membrane PIP2-binding site, and promotes integrin activation. We further demonstrate that this process requires phosphorylation of Tyr267 and Tyr427 in the RIAM PH domain by Src. Our data reveal an unorthodox regulatory mechanism of small GTPase effector proteins by phosphorylation-dependent PM association of the PH domain and provide new insights into the link between Src kinases and integrin signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Membrana/química , Quinases da Família src/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sítios de Ligação , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Células HEK293 , Humanos , Integrinas/química , Integrinas/metabolismo , Células Jurkat , Proteínas de Membrana/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico
4.
J Solution Chem ; 44(3-4): 838-849, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25960583

RESUMO

We have carried out an ab initio molecular dynamics study on the sulfur dioxide (SO2) solvation in 1-ethyl-3-methylimidazolium thiocyanate for which we have observed that both cations and anions play an essential role in the solvation of SO2. Whereas, the anions tend to form a thiocyanate- and much less often an isothiocyanate-SO2 adduct, the cations create a "cage" around SO2 with those groups of atoms that donate weak interactions like the alkyl hydrogen atoms as well as the heavy atoms of the [Formula: see text]-system. Despite these similarities between the solvation of SO2 and CO2 in ionic liquids, an essential difference was observed with respect to the acidic protons. Whereas CO2 avoids accepting hydrogen bonds form the acidic hydrogen atoms of the cations, SO2 can from O(SO2)-H(cation) hydrogen bonds and thus together with the strong anion-adduct it actively integrates in the hydrogen bond network of this particular ionic liquid. The fact that SO2 acts in this way was termed a linker effect by us, because the SO2 can be situated between cation and anion operating as a linker between them. The particular contacts are the H(cation)[Formula: see text]O(SO2) hydrogen bond and a S(anion)-S(SO2) sulfur bridge. Clearly, this observation provides a possible explanation for the question of why the SO2 solubility in these ionic liquids is so high.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA