Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 588(7837): 277-283, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33239791

RESUMO

Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome1, and the lack of genome-assembly data for multiple wheat lines2,3. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses4,5. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm16, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.


Assuntos
Variação Genética , Genoma de Planta/genética , Genômica , Internacionalidade , Melhoramento Vegetal/métodos , Triticum/genética , Aclimatação/genética , Animais , Centrômero/genética , Centrômero/metabolismo , Mapeamento Cromossômico , Clonagem Molecular , Variações do Número de Cópias de DNA/genética , Elementos de DNA Transponíveis/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Genes de Plantas/genética , Introgressão Genética , Haplótipos , Insetos/patogenicidade , Proteínas NLR/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Triticum/classificação , Triticum/crescimento & desenvolvimento
2.
Plant Mol Biol ; 110(1-2): 131-145, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35729482

RESUMO

KEY MESSAGE: Ethanol priming induces heat stress tolerance by the stimulation of unfolded protein response. Global warming increases the risk of heat stress-related yield losses in agricultural crops. Chemical priming, using safe agents, that can flexibly activate adaptive regulatory responses to adverse conditions, is a complementary approach to genetic improvement for stress adaptation. In the present study, we demonstrated that pretreatment of Arabidopsis with a low concentration of ethanol enhances heat tolerance without suppressing plant growth. We also demonstrated that ethanol pretreatment improved leaf growth in lettuce (Lactuca sativa L.) plants grown in the field conditions under high temperatures. Transcriptome analysis revealed a set of genes that were up-regulated in ethanol-pretreated plants, relative to water-pretreated controls. Binding Protein 3 (BIP3), an endoplasmic reticulum (ER)-stress marker chaperone gene, was among the identified up-regulated genes. The expression levels of BIP3 were confirmed by RT-qPCR. Root-uptake of ethanol was metabolized to organic acids, nucleic acids, amines and other molecules, followed by an increase in putrescine content, which substantially promoted unfolded protein response (UPR) signaling and high-temperature acclimation. We also showed that inhibition of polyamine production and UPR signaling negated the heat stress tolerance induced by ethanol pretreatment. These findings collectively indicate that ethanol priming activates UPR signaling via putrescine accumulation, leading to enhanced heat stress tolerance. The information gained from this study will be useful for establishing ethanol-mediated chemical priming strategies that can be used to help maintain crop production under heat stress conditions.


Assuntos
Arabidopsis , Termotolerância , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Etanol/farmacologia , Putrescina/metabolismo , Resposta a Proteínas não Dobradas
3.
Plant Cell Physiol ; 63(9): 1181-1192, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36003026

RESUMO

Water scarcity is a serious agricultural problem causing significant losses to crop yield and product quality. The development of technologies to mitigate the damage caused by drought stress is essential for ensuring a sustainable food supply for the increasing global population. We herein report that the exogenous application of ethanol, an inexpensive and environmentally friendly chemical, significantly enhances drought tolerance in Arabidopsis thaliana, rice and wheat. The transcriptomic analyses of ethanol-treated plants revealed the upregulation of genes related to sucrose and starch metabolism, phenylpropanoids and glucosinolate biosynthesis, while metabolomic analysis showed an increased accumulation of sugars, glucosinolates and drought-tolerance-related amino acids. The phenotyping analysis indicated that drought-induced water loss was delayed in the ethanol-treated plants. Furthermore, ethanol treatment induced stomatal closure, resulting in decreased transpiration rate and increased leaf water contents under drought stress conditions. The ethanol treatment did not enhance drought tolerance in the mutant of ABI1, a negative regulator of abscisic acid (ABA) signaling in Arabidopsis, indicating that ABA signaling contributes to ethanol-mediated drought tolerance. The nuclear magnetic resonance analysis using 13C-labeled ethanol indicated that gluconeogenesis is involved in the accumulation of sugars. The ethanol treatment did not enhance the drought tolerance in the aldehyde dehydrogenase (aldh) triple mutant (aldh2b4/aldh2b7/aldh2c4). These results show that ABA signaling and acetic acid biosynthesis are involved in ethanol-mediated drought tolerance and that chemical priming through ethanol application regulates sugar accumulation and gluconeogenesis, leading to enhanced drought tolerance and sustained plant growth. These findings highlight a new survival strategy for increasing crop production under water-limited conditions.


Assuntos
Arabidopsis , Secas , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Etanol/metabolismo , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Açúcares/metabolismo , Água/metabolismo
4.
Plant Cell Physiol ; 62(1): 8-27, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33244607

RESUMO

Bread wheat is a major crop that has long been the focus of basic and breeding research. Assembly of its genome has been difficult because of its large size and allohexaploid nature (AABBDD genome). Following the first reported assembly of the genome of the experimental strain Chinese Spring (CS), the 10+ Wheat Genomes Project was launched to produce multiple assemblies of worldwide modern cultivars. The only Asian cultivar in the project is Norin 61, a representative Japanese cultivar adapted to grow across a broad latitudinal range, mostly characterized by a wet climate and a short growing season. Here, we characterize the key aspects of its chromosome-scale genome assembly spanning 15 Gb with a raw scaffold N50 of 22 Mb. Analysis of the repetitive elements identified chromosomal regions unique to Norin 61 that encompass a tandem array of the pathogenesis-related 13 family. We report novel copy-number variations in the B homeolog of the florigen gene FT1/VRN3, pseudogenization of its D homeolog and the association of its A homeologous alleles with the spring/winter growth habit. Furthermore, the Norin 61 genome carries typical East Asian functional variants different from CS, ranging from a single nucleotide to multi-Mb scale. Examples of such variation are the Fhb1 locus, which confers Fusarium head-blight resistance, Ppd-D1a, which confers early flowering, Glu-D1f for Asian noodle quality and Rht-D1b, which introduced semi-dwarfism during the green revolution. The adoption of Norin 61 as a reference assembly for functional and evolutionary studies will enable comprehensive characterization of the underexploited Asian bread wheat diversity.


Assuntos
Resistência à Doença/genética , Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Genoma de Planta/genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Citogenética , Ásia Oriental , Flores/genética , Fusarium , Genes de Plantas/fisiologia , Estudos de Associação Genética , Variação Genética/genética , Variação Genética/fisiologia , Genoma de Planta/fisiologia , Genótipo , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Triticum/crescimento & desenvolvimento , Triticum/imunologia , Triticum/fisiologia
5.
Planta ; 253(6): 132, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059984

RESUMO

MAIN CONCLUSION: The distribution of early flowering alleles of VRN-A3 was found to be biased to low latitudes, and these alleles may contribute to environmental adaptability to low latitudes in cultivated emmer wheat. In wheat (Triticum spp.), the flowering time is an important trait for successful seed production and yield by adapting to the regional environment. An early flowering allele of VRN-A3 with 7- and 25-bp insertions in the promoter region (Vrn-A3a-h1) has recently been reported from the analysis of an emmer wheat (Triticum turgidum L. ssp. dicoccum) accession, TN26. This early flowering allele of VRN-A3 might be associated with the regional adaptation of wheat. In this study, we elucidated its geographic distribution to assess the importance of the early flowering allele of VRN-A3 in worldwide wheat collection. From sequence analysis, we identified six VRN-A3 alleles with the 7- and 25-bp insertions, namely, Vrn-A3a-h2, Vrn-A3a-h3, Vrn-A3a-h4, Vrn-A3a-h5, Vrn-A3a-h6, and Vrn-A3c-h2 from wild emmer wheat, while we identified two VRN-A3 alleles with these insertions, Vrn-A3a-h2 and Vrn-A3c-h1 from cultivated tetraploid and hexaploid wheat species in addition to Vrn-A3a-h1. Among VRN-A3 alleles distributed in cultivated wheat, we found that Vrn-A3a-h2 promoted early heading, whereas Vrn-A3c-h1 did not affect heading time. Our analysis showed that the distribution of early flowering alleles of VRN-A3 dominated in cultivated emmer wheat in Ethiopia and India, which actually showed an early flowering phenotype. This implied that the early flowering alleles of VRN-A3 contribute to adaptability to a low-latitude environment in cultivated emmer wheat. We could not find durum (T. turgidum L. ssp. durum) and bread wheat (T. aestivum L. ssp. aestivum) accessions with these early flowering alleles. Our findings indicated that Vrn-A3a-h1 and Vrn-A3a-h2 were useful for breeding of early flowering cultivars in durum and bread wheat varieties.


Assuntos
Melhoramento Vegetal , Triticum , Alelos , Etiópia , Poliploidia , Triticum/genética
6.
Mol Genet Genomics ; 291(1): 65-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26159870

RESUMO

To characterize the structure and expression of a large multigene family of α/ß-gliadin genes, 90 individual α/ß-gliadin genes harboring a promoter region were identified in the wheat cultivar Chinese Spring. These genes were classified into eleven groups by phylogenetic analysis, and the chromosomes they were derived from were determined. Of these genes, 50 had the basic α/ß-gliadin domains and six conserved cysteine residues and 16, 16 and 18 of them were, respectively, located on chromosome 6A, 6B and 6D. Six genes had an additional cysteine residue, suggesting that these α/ß-gliadins acquired the property of binding other proteins through intermolecular disulphide bands. Expression of α/ß-gliadin genes in developing seeds was measured by quantitative RT-PCR using group-specific primers over 3 years. Expression patterns of these genes on the basis of accumulated temperature were similar among gene groups, whereas expression levels differed for the 3 years. The expression of most α/ß-gliadin and other prolamin genes was correlated with the sunshine duration. On the other hand, although all α/ß-gliadin genes had a common E-box within the -300 promoter region, some genes showed a particular expression pattern with respect to the sunshine duration, similarly to gene encoding high-molecular weight glutenin subunits and endosperm enzymes. These observations suggested that expression of each α/ß-gliadin gene is differentially regulated by multiple regulatory factors.


Assuntos
Gliadina/genética , Família Multigênica/genética , Triticum/genética , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Endosperma/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Glutens/genética , Dados de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência
7.
Plant Cell ; 23(9): 3215-29, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21896881

RESUMO

Seed dormancy is an adaptive mechanism and an important agronomic trait. Temperature during seed development strongly affects seed dormancy in wheat (Triticum aestivum) with lower temperatures producing higher levels of seed dormancy. To identify genes important for seed dormancy, we used a wheat microarray to analyze gene expression in embryos from mature seeds grown at lower and higher temperatures. We found that a wheat homolog of MOTHER OF FT AND TFL1 (MFT) was upregulated after physiological maturity in dormant seeds grown at the lower temperature. In situ hybridization analysis indicated that MFT was exclusively expressed in the scutellum and coleorhiza. Mapping analysis showed that MFT on chromosome 3A (MFT-3A) colocalized with the seed dormancy quantitative trait locus (QTL) QPhs.ocs-3A.1. MFT-3A expression levels in a dormant cultivar used for the detection of the QTL were higher after physiological maturity; this increased expression correlated with a single nucleotide polymorphism in the promoter region. In a complementation analysis, high levels of MFT expression were correlated with a low germination index in T1 seeds. Furthermore, precocious germination of isolated immature embryos was suppressed by transient introduction of MFT driven by the maize (Zea mays) ubiquitin promoter. Taken together, these results suggest that MFT plays an important role in the regulation of germination in wheat.


Assuntos
Germinação/genética , Dormência de Plantas , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Triticum/genética , Mapeamento Cromossômico , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Sementes/genética , Temperatura , Triticum/metabolismo
8.
Planta ; 237(4): 1001-13, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23192388

RESUMO

Intracellular signaling pathways between the mitochondria and the nucleus are important in both normal and abnormal development in plants. The homeotic transformation of stamens into pistil-like structures (a phenomenon termed pistillody) in cytoplasmic substitution (alloplasmic) lines of bread wheat (Triticum aestivum) has been suggested to be induced by mitochondrial retrograde signaling, one of the forms of intracellular communication. We showed previously that the mitochondrial gene orf260 could alter the expression of nuclear class B MADS-box genes to induce pistillody. To elucidate the interactions between orf260 and nuclear homeotic genes, we performed a microarray analysis to compare gene expression patterns in the young spikes of a pistillody line and a normal line. We identified five genes that showed higher expression levels in the pistillody line. Quantitative expression analysis using real-time PCR indicated that among these five genes, Wheat Calmodulin-Binding Protein 1 (WCBP1) was significantly upregulated in young spikes of the pistillody line. The amino acid sequence of WCBP1 was predicted from the full-length cDNA sequence and found to encode a novel plant calmodulin-binding protein. RT-PCR analysis indicated that WCBP1 was preferentially expressed in young spikes at an early stage and decreased during spike maturation, indicating that it was associated with spikelet/floret development. Furthermore, in situ hybridization analysis suggested that WCBP1 was highly expressed in the pistil-like stamens at early to late developmental stages. These results indicate that WCBP1 plays a role in formation and development of pistil-like stamens induced by mitochondrial retrograde signaling.


Assuntos
Proteínas de Ligação a Calmodulina/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Hibridização In Situ , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais , Triticum/genética , Triticum/crescimento & desenvolvimento , Regulação para Cima
9.
Plant Biotechnol (Tokyo) ; 40(3): 237-245, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38420565

RESUMO

Genome editing is a promising method for simultaneously mutagenizing homoeologs in the three subgenomes of wheat (Triticum aestivum L.). However, the mutation rate via genome editing must be improved in order to analyze gene function and to quickly modify agronomic traits in wheat. Here, we examined the Cas9-induced mutation rates in wheat plants using two promoters for single guide RNA (sgRNA) expression and applying heat treatment during Agrobacterium tumefaciens-mediated transformation. Using the TaU6 promoter instead of the OsU6 promoter from rice (Oryza sativa L.) to drive sgRNA expression greatly improved the Cas9-induced mutation rate. Moreover, a heat treatment of 30°C for 1 day during tissue culture increased the Cas9-induced mutation rate and the variety of mutations obtained compared to tissue culture at the normal temperature (25°C). The same heat treatment did not affect the regeneration rates of transgenic plants but tended to increase the number of transgene integration sites in each transgenic plant. These results lay the foundation for improving the Cas9-induced mutation rate in wheat to enhance research on gene function and crop improvement.

10.
Plant Physiol ; 157(3): 1555-67, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21951468

RESUMO

Barley (Hordeum vulgare) has a much higher content of bioactive substances than wheat (Triticum aestivum). In order to investigate additive and/or synergistic effect(s) on the phytosterol content of barley chromosomes, we used a series of barley chromosome addition lines of common wheat that were produced by normal crossing. In determining the plant sterol levels in 2-week-old seedlings and dry seeds, we found that the level of stigmasterol in the barley chromosome 3 addition (3H) line in the seedlings was 1.5-fold higher than that in the original wheat line and in the other barley chromosome addition lines, but not in the seeds. Simultaneously, we determined the overall expression pattern of genes related to plant sterol biosynthesis in the seedlings of wheat and each addition line to assess the relative expression of each gene in the sterol pathway. Since we elucidated the CYP710A8 (cytochrome P450 subfamily)-encoding sterol C-22 desaturase as a key characteristic for the higher level of stigmasterol, full-length cDNAs of wheat and barley CYP710A8 genes were isolated. These CYP710A8 genes were mapped on chromosome 3 in barley (3H) and wheat (3A, 3B, and 3D), and the expression of CYP710A8 genes increased in the 3H addition line, indicating that it is responsible for stigmasterol accumulation. Overexpression of the CYP710A8 genes in Arabidopsis increased the stigmasterol content but did not alter the total sterol level. Our results provide new insight into the accumulation of bioactive compounds in common wheat and a new approach for assessing plant metabolism profiles.


Assuntos
Cromossomos de Plantas/metabolismo , Cruzamentos Genéticos , Técnicas Genéticas , Hordeum/genética , Estigmasterol/metabolismo , Triticum/genética , Sequência de Aminoácidos , Arabidopsis/genética , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Hordeum/metabolismo , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/metabolismo , Sementes/metabolismo , Sitosteroides/metabolismo , Triticum/metabolismo
11.
Sci Rep ; 12(1): 11534, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798819

RESUMO

Salt stress reduces wheat yield. Therefore, improvement for enhanced salt stress tolerance is necessary for stable production. To understand the molecular mechanism of salt tolerance in common wheat and synthetic hexaploid (SH) wheat, RNA sequencing was performed on the roots of three wheat lines salt-tolerant SH wheat, salt-tolerant common wheat, and salt-sensitive common wheat. Differentially expressed genes (DEGs) in response to salt stress were characterized using gene ontology enrichment analysis. Salt tolerance in common wheat has been suggested to be mainly regulated by the activation of transporters. In contrast, salt tolerance in SH wheat is enhanced through up-regulation of the reactive oxygen species signaling pathway, other unknown pathways, and different ERF transcription factors. These results indicate that salt tolerance is differentially controlled between common wheat and SH wheat. Furthermore, QTL analysis was performed using the F2 population derived from SH and salt-sensitive wheat. No statistically significant QTL was detected, suggesting that numerous QTLs with negligible contributions are involved in salt tolerance in SH wheat. We also identified DEGs specific to each line near one probable QTL. These findings show that SH wheat possesses salt tolerance mechanisms lacking in common wheat and may be potential breeding material for salt tolerance.


Assuntos
Melhoramento Vegetal , Triticum , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Salino/genética , Tolerância ao Sal/genética , Transcriptoma , Triticum/genética
12.
Naturwissenschaften ; 98(11): 983-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21947194

RESUMO

The maize orange leafhopper Cicadulina bipunctata is distributed widely in tropical and subtropical regions of the Old World and feeds on various Poaceae. The leafhopper is recognized as an important pest of maize in several countries. Adults as well as nymphs of C. bipunctata induce growth stunting and galls characterized by the severe swelling of leaf veins on many cereal crops including wheat, rice, and maize, but do not on barley. To clarify the mechanism of growth stunting and gall induction by C. bipunctata, we used six barley chromosome disomic addition lines of wheat (2H-7H) and investigated the effect of barley (cv. Betzes) chromosome addition on the susceptibility of wheat (cv. Chinese Spring) to feeding by the leafhopper. Feeding by C. bipunctata significantly stunted the growth in 2H, 3H, 4H, and 5H, but did not in 6H and 7H. The degree of gall induction was significantly weaker and severer in 3H and 5H than in Chinese Spring, respectively. These results suggest that barley genes resistant to growth stunting and gall induction exist in 6H and 7H, and 3H, respectively. 5H is considered to be useful for future assays investigating the mechanism of gall induction by this leafhopper because of the high susceptibility to the feeding by C. bipunctata. Significant correlation between the degrees of growth stunting and gall induction was not detected in the six chromosome addition lines and Chinese spring. This implies that these two symptoms are independent phenomena although both are initiated by the feeding of C. bipunctata.


Assuntos
Cromossomos de Plantas/genética , Hemípteros/fisiologia , Hordeum/genética , Triticum/genética , Triticum/parasitologia , Animais , Interações Hospedeiro-Parasita/genética , Modelos Lineares , Tumores de Planta/genética , Triticum/crescimento & desenvolvimento
13.
Front Plant Sci ; 12: 715985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539709

RESUMO

The seed protein α-gliadin is a major component of wheat flour and causes gluten-related diseases. However, due to the complexity of this multigene family with a genome structure composed of dozens of copies derived from tandem and genome duplications, little was known about the variation between accessions, and thus little effort has been made to explicitly target α-gliadin for bread wheat breeding. Here, we analyzed genomic variation in α-gliadins across 11 recently published chromosome-scale assemblies of hexaploid wheat, with validation using long-read data. We unexpectedly found that the Gli-B2 locus is not a single contiguous locus but is composed of two subloci, suggesting the possibility of recombination between the two during breeding. We confirmed that the number of immunogenic epitopes among 11 accessions varied. The D subgenome of a European spelt line also contained epitopes, in agreement with its hybridization history. Evolutionary analysis identified amino acid sites under diversifying selection, suggesting their functional importance. The analysis opens the way for improved grain quality and safety through wheat breeding.

14.
Front Plant Sci ; 12: 648841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790930

RESUMO

Limitations for the application of genome editing technologies on elite wheat (Triticum aestivum L.) varieties are mainly due to the dependency on in vitro culture and regeneration capabilities. Recently, we developed an in planta particle bombardment (iPB) method which has increased process efficiency since no culture steps are required to create stably genome-edited wheat plants. Here, we report the application of the iPB method to commercially relevant Japanese elite wheat varieties. The biolistic delivery of gold particles coated with plasmids expressing CRISPR/Cas9 components designed to target TaQsd1 were bombarded into the embryos of imbibed seeds with their shoot apical meristem (SAM) exposed. Mutations in the target gene were subsequently analyzed within flag leaf tissue by using cleaved amplified polymorphic sequence (CAPS) analysis. A total of 9/358 (2.51%) of the bombarded plants (cv. "Haruyokoi," spring type) carried mutant alleles in the tissue. Due to the chimeric nature of the T0 plants, only six of them were inherited to the next (T1) generation. Genotypic analysis of the T2 plants revealed a single triple-recessive homozygous mutant of the TaQsd1 gene. Compared to wild type, the homozygous mutant exhibited a 7 days delay in the time required for 50% seed germination. The iPB method was also applied to two elite winter cultivars, "Yumechikara" and "Kitanokaori," which resulted in successful genome editing at slightly lower efficiencies as compared to "Haruyokoi." Taken together, this report demonstrates that the in planta genome editing method through SAM bombardment can be applicable to elite wheat varieties that are otherwise reluctant to callus culture.

15.
Plant Biotechnol (Tokyo) ; 37(2): 247-251, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32821233

RESUMO

Genome editing using CRISPR/Cas9 is useful for common wheat because common wheat has allohexaploid nature and it can induce mutations simultaneously in three homoeologous genes. Although Agrobacterium-mediated transformation has advantages in genome editing, it still has low efficiency and requires relatively long time in wheat. Therefore, the use of guide RNAs (gRNAs) with efficient mutagenesis in vivo is one of the critical factors for producing genome-edited mutant lines in a short time. In this study, we targeted three genes in common wheat and established a rapid method for detection of mutations induced by the biolistic transient expression system. Biolistic transient expression of the gRNAs and Cas9 was achieved in immature wheat embryos. Mutations were detected a week later using PCR-RFLP and verified by the sequencing of genomic clones. We confirmed several types of mutations that occurred at different rates depending on the target sequences. Furthermore, frequencies of mutations tended to be higher at the targets that were edited at higher rates in the plants transformed by Agrobacterium. These results show that this method of rapid detection of edited mutations could be used for variety of applications, such as screening of target sequences or modified vectors for efficient CRISPR/Cas9 genome editing in wheat.

16.
BMC Genomics ; 10: 271, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19534823

RESUMO

BACKGROUND: Wheat is an allopolyploid plant that harbors a huge, complex genome. Therefore, accumulation of expressed sequence tags (ESTs) for wheat is becoming particularly important for functional genomics and molecular breeding. We prepared a comprehensive collection of ESTs from the various tissues that develop during the wheat life cycle and from tissues subjected to stress. We also examined their expression profiles in silico. As full-length cDNAs are indispensable to certify the collected ESTs and annotate the genes in the wheat genome, we performed a systematic survey and sequencing of the full-length cDNA clones. This sequence information is a valuable genetic resource for functional genomics and will enable carrying out comparative genomics in cereals. RESULTS: As part of the functional genomics and development of genomic wheat resources, we have generated a collection of full-length cDNAs from common wheat. By grouping the ESTs of recombinant clones randomly selected from the full-length cDNA library, we were able to sequence 6,162 independent clones with high accuracy. About 10% of the clones were wheat-unique genes, without any counterparts within the DNA database. Wheat clones that showed high homology to those of rice were selected in order to investigate their expression patterns in various tissues throughout the wheat life cycle and in response to abiotic-stress treatments. To assess the variability of genes that have evolved differently in wheat and rice, we calculated the substitution rate (Ka/Ks) of the counterparts in wheat and rice. Genes that were preferentially expressed in certain tissues or treatments had higher Ka/Ks values than those in other tissues and treatments, which suggests that the genes with the higher variability expressed in these tissues is under adaptive selection. CONCLUSION: We have generated a high-quality full-length cDNA resource for common wheat, which is essential for continuation of the ongoing curation and annotation of the wheat genome. The data for each clone's expression in various tissues and stress treatments and its variability in wheat and rice as a result of their diversification are valuable tools for functional genomics in wheat and for comparative genomics in cereals.


Assuntos
Adaptação Biológica/genética , Evolução Molecular , Oryza/genética , Plantas Tolerantes a Sal/genética , Triticum/genética , DNA Complementar/genética , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genes de Plantas , Genômica , Análise de Sequência de DNA , Estresse Fisiológico
17.
Cell Rep ; 28(5): 1362-1369.e4, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31365876

RESUMO

Common wheat has three sets of sub-genomes, making mutations difficult to observe, especially for traits controlled by recessive genes. Here, we produced hexaploid wheat lines with loss of function of homeoalleles of Qsd1, which controls seed dormancy in barley, by Agrobacterium-mediated CRISPR/Cas9. Of the eight transformed wheat events produced, three independent events carrying multiple mutations in wheat Qsd1 homeoalleles were obtained. Notably, one line had mutations in every homeoallele. We crossed this plant with wild-type cultivar Fielder to generate a transgene-free triple-recessive mutant, as revealed by Mendelian segregation. The mutant showed a significantly longer seed dormancy period than wild-type, which may result in reduced pre-harvest sprouting of grains on spikes. PCR, southern blotting, and whole-genome shotgun sequencing revealed that this segregant lacked transgenes in its genomic sequence. This technique serves as a model for trait improvement in wheat, particularly for genetically recessive traits, based on locus information from diploid barley.


Assuntos
Edição de Genes , Genes Recessivos , Mutação , Dormência de Plantas/genética , Sementes , Triticum , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Técnicas de Inativação de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Triticum/genética , Triticum/metabolismo
18.
J Exp Bot ; 59(4): 891-905, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18326864

RESUMO

Cereal lip19 genes encoding bZIP-type transcription factors are assumed to play a regulatory role in gene expression during the cold acclimation process. However, no direct evidence shows an association of LIP19-type bZIPs with stress tolerance or activation of stress-responsive Cor/Lea genes. To understand the molecular basis of development of abiotic stress tolerance through the LIP19 transcription factor, a wheat lip19 homologue, Wlip19, was isolated and characterized. Wlip19 expression was activated by low temperature in seedlings and was higher in a freezing-tolerant cultivar than in a freezing-sensitive one. Wlip19 also responded to drought and exogenous ABA treatment. Wlip19-expressing transgenic tobacco showed a significant increase in abiotic stress tolerance, especially freezing tolerance. Expression of a GUS reporter gene under the control of promoter sequences of four wheat Cor/Lea genes, Wdhn13, Wrab17, Wrab18, and Wrab19, was enhanced by Wlip19 expression in wheat callus and tobacco plants. These results indicate that WLIP19 acts as a transcriptional regulator of Cor/Lea genes in the development of abiotic stress tolerance. Moreover, direct protein-protein interaction between WLIP19 and a wheat OBF1 homologue TaOBF1, another bZIP-type transcription factor, was observed, suggesting that this interaction is conserved in cereals.


Assuntos
Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/metabolismo , Ácido Abscísico/farmacologia , Aclimatação , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Temperatura Baixa , Congelamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/efeitos dos fármacos , Concentração Osmolar , Filogenia , Proteínas de Plantas/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Triticum/genética
19.
Genes Genet Syst ; 93(1): 9-20, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-29343665

RESUMO

The wheat seed storage proteins gliadin and glutenin are encoded by multigenes. Gliadins are further classified into α-, γ-, δ- and ω-gliadins. Genes encoding α-gliadins belong to a large multigene family, whose members are located on the homoeologous group 6 chromosomes at the Gli-2 loci. Genes encoding other gliadins are located on the homoeologous group 1 chromosomes at the Gli-1 loci. Two-dimensional polyacrylamide gel electrophoresis (2-DE) was used to characterize and profile the gliadins. The gliadins in aneuploid Chinese Spring wheat lines were then compared in this study. Gliadin proteins separated into 70 spots after 2-DE and a total of 10, 10 and 16 spots were encoded on chromosomes 6A, 6B and 6D, respectively, which suggested that they were α-gliadins. Similarly, six, three and seven spots were encoded on chromosomes 1A, 1B and 1D, respectively, which indicated that they were γ-gliadins. Spots that could not be assigned to chromosomes were N-terminally sequenced and were all determined to be α-gliadins or γ-gliadins. The 2-DE profiles showed that specific α-gliadin spots assigned to chromosome 6D were lost in tetrasomic chromosome 2A lines. Furthermore, western blotting against the Glia-α9 peptide, an epitope for celiac disease (CD), suggested that α-gliadins harboring the CD epitope on chromosome 6D were absent in the tetrasomic chromosome 2A lines. Systematic analysis of α-gliadins using 2-DE, quantitative RT-PCR and genomic PCR revealed that tetrasomic 2A lines carry deletion of a chromosome segment at the Gli-D2 locus. This structural alteration at the Gli-D2 locus may provide a genetic resource in breeding programs for the reduction of CD immunotoxicity.


Assuntos
Doença Celíaca/etiologia , Gliadina/genética , Gliadina/metabolismo , Triticum/metabolismo , Aneuploidia , Doença Celíaca/imunologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Epitopos/efeitos adversos , Epitopos/química , Epitopos/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gliadina/química , Gliadina/imunologia , Humanos , Família Multigênica , Triticum/genética , Triticum/imunologia
20.
Nat Plants ; 3: 17097, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28650429

RESUMO

Water deficit caused by global climate changes seriously endangers the survival of organisms and crop productivity, and increases environmental deterioration1,2. Plants' resistance to drought involves global reprogramming of transcription, cellular metabolism, hormone signalling and chromatin modification3-8. However, how these regulatory responses are coordinated via the various pathways, and the underlying mechanisms, are largely unknown. Herein, we report an essential drought-responsive network in which plants trigger a dynamic metabolic flux conversion from glycolysis into acetate synthesis to stimulate the jasmonate (JA) signalling pathway to confer drought tolerance. In Arabidopsis, the ON/OFF switching of this whole network is directly dependent on histone deacetylase HDA6. In addition, exogenous acetic acid promotes de novo JA synthesis and enrichment of histone H4 acetylation, which influences the priming of the JA signalling pathway for plant drought tolerance. This novel acetate function is evolutionarily conserved as a survival strategy against environmental changes in plants. Furthermore, the external application of acetic acid successfully enhanced the drought tolerance in Arabidopsis, rapeseed, maize, rice and wheat plants. Our findings highlight a radically new survival strategy that exploits an epigenetic switch of metabolic flux conversion and hormone signalling by which plants adapt to drought.


Assuntos
Acetatos/metabolismo , Arabidopsis/fisiologia , Secas , Aclimatação , Aldeído Oxirredutases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Epigênese Genética , Glicólise , Histona Desacetilases/metabolismo , Oxilipinas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Piruvato Descarboxilase/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA