Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34770445

RESUMO

In this paper, a dual-polarized four-port 2 × 2 series fed antenna array operating at 28 GHz with beam-switching capability is proposed. The antenna array uses a simple passive beamforming network to switch the main beam. The presented antenna design is suitable for 5G user equipment and high data rates applications by which it has a compact size with low cost and complexity. The size of the antenna is 37.2 × 37.2 mm2 including the ground plane, and it produces 10 different switched beams by using only two simple 3 dB/90∘ couplers which create the required amplitudes and phase excitations for the antenna elements. A one-port simple feeding mechanism including Peregrine PE42525 SPDT switch modules and a power divider is used to generate and measure the 10 switched beams. The antenna design is implemented on a two-layer 0.203 mm thick low-loss (tanδ = 0.0027) Rogers 4003C substrate, and it has a measured 10 dB impedance bandwidth of 4 GHz (14.3%, from 26 GHz to 30 GHz) for all ports. Measured peak isolation between any dual-polarized ports of the antenna is better than 30 dB. The antenna has an average measured realized gain of 8.9 dBi and around 10 dB side lobe level (SLL) for all beams. The antenna has 3-dB coverage of 80∘ to 90∘ in 2D space and it has a maximum of ±26∘ beam-steering angle. The antenna is designed and simulated using Ansys HFSS and fabricated using regular PCB processing.

2.
Biomed Phys Eng Express ; 9(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36596253

RESUMO

Remote photoplethysmography (rPPG) using camera-based imaging has shown excellent potential recently in vital signs monitoring due to its contactless nature. However, the optimum filter selection for pre-processing rPPG data in signal conditioning is still not straightforward. The best algorithm selection improves the signal-to-noise ratio (SNR) and therefore improves the accuracy of the recognition and classification of vital signs. We recorded more than 300 temporal rPPG signals where the noise was not motion-induced. Then, we investigated the best digital filter in pre-processing temporal rPPG data and compared the performances of 10 filters with 10 orders each (i.e., a total of 100 filters). The performances are assessed using a signal quality metric on three levels. The quality of the raw signals was classified under three categories; Q1 being the best and Q3 being the worst. The results are presented in SNR scores, which show that the Chebyshev II orders of 2nd, 4th, and 6th perform the best for denoising rPPG signals.


Assuntos
Algoritmos , Fotopletismografia , Fotopletismografia/métodos , Razão Sinal-Ruído , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA