Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477528

RESUMO

Recently, it has been found that e-commerce (EC) websites provide a large amount of useful information that exceed the human cognitive processing capacity. In order to help customers in comparing alternatives when buying a product, previous research authors have designed opinion summarization systems based on customer reviews. They ignored the template information provided by manufacturers, although its descriptive information has the most useful product characteristics and texts are linguistically correct, unlike reviews. Therefore, this paper proposes a methodology coined as SEOpinion (summarization and exploration of opinions) to summarize aspects and spot opinion(s) regarding them using a combination of template information with customer reviews in two main phases. First, the hierarchical aspect extraction (HAE) phase creates a hierarchy of aspects from the template. Subsequently, the hierarchical aspect-based opinion summarization (HAOS) phase enriches this hierarchy with customers' opinions to be shown to other potential buyers. To test the feasibility of using deep learning-based BERT techniques with our approach, we created a corpus by gathering information from the top five EC websites for laptops. The experimental results showed that recurrent neural network (RNN) achieved better results (77.4% and 82.6% in terms of F1-measure for the first and second phases, respectively) than the convolutional neural network (CNN) and the support vector machine (SVM) technique.


Assuntos
Comércio , Atitude , Comportamento do Consumidor , Humanos , Redes Neurais de Computação , Máquina de Vetores de Suporte
2.
Sci Rep ; 14(1): 14498, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914596

RESUMO

Profiling social media users is an analytical approach to generate an extensive blueprint of user's personal characteristics, which can be useful for a diverse range of applications, such as targeted marketing and personalized recommendations. Although social user profiling has gained substantial attention in recent years, effectively constructing a collaborative model that could describe long and short-term profiles is still challenging. In this paper, we will discuss the profiling problem from two perspectives; how to mathematically model and track user's behavior over short and long periods and how to enhance the classification of user's activities. Using mathematical equations, our model can define periods in which the user's interests abruptly changed. A dataset consisting of 30,000 tweets was built and manually annotated into 10 topic categories. Bi-LSTM and GRU models are applied to classify the user's activities representing his interests, which then are utilized to create and model the dynamic profile. In addition, the effect of word embedding techniques and pre-trained classification models on the accuracy of the classification process is explored in this research.

3.
Sci Rep ; 13(1): 5250, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002322

RESUMO

One of the most dangerous snake species is the "Egyptian cobra" which can kill a man in only 15 min. This paper uses deep learning techniques to identify the Egyptian cobra bite in an accurate manner based on an image of the marks of the bites. We build a dataset consisting of 500 images of cobra bites marks and 600 images of marks of other species of snakes that exist in Egypt. We utilize techniques such as multi-task learning, transfer learning and data augmentation to boost the generalization and accuracy of our model. We have achieved 90.9% of accuracy. We must keep the availability and accuracy of our model as much as possible. So, we utilize cloud and edge computing techniques to enhance the availability of our model. We have achieved 90.9% of accuracy, which is considered as an efficient result, not 100%, so it is normal for the system to perform sometimes wrong classifications. So, we suggest to re-train our model with the wrong predictions, whereas the edge computing units, where the classifier task is positioned, resend the wrong predictions to the cloud model, where the training process occurs, to retrain the model. This enhances the accuracy to the best level after a small period and increases the dataset size. We use the quantum particle swarm optimization technique to determine the optimal required number of edge nodes.

4.
Signal Image Video Process ; : 1-8, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37362230

RESUMO

Using radiographic changes of COVID-19 in the medical images, artificial intelligence techniques such as deep learning are used to extract some graphical features of COVID-19 and present a Covid-19 diagnostic tool. Differently from previous works that focus on using deep learning to analyze CT scans or X-ray images, this paper uses deep learning to scan electro diagram (ECG) images to diagnose Covid-19. Covid-19 patients with heart disease are the most people exposed to violent symptoms of Covid-19 and death. This shows that there is a special, unclear relation (until now) and parameters between covid-19 and heart disease. So, as previous works, using a general diagnostic model to detect covid-19 from all patients, based on the same rules, is not accurate as we prove later in the practical section of our paper because the model faces dispersion in the data during the training process. So, this paper aims to propose a novel model that focuses on diagnosing accurately Covid-19 for heart patients only to increase the accuracy and to reduce the waiting time of a heart patient to perform a covid-19 diagnosis. Also, we handle the only one existed dataset that contains ECGs of Covid-19 patients and produce a new version, with the help of a heart diseases expert, which consists of two classes: ECGs of heart patients with positive Covid-19 and ECGs of heart patients with negative Covid-19 cases. This dataset will help medical experts and data scientists to study the relation between Covid-19 and heart patients. We achieve overall accuracy, sensitivity and specificity 99.1%, 99% and 100%, respectively. Supplementary Information: The online version contains supplementary material available at 10.1007/s11760-023-02561-8.

5.
Comput Intell Neurosci ; 2022: 9112634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875781

RESUMO

The Internet of Medical Things (IoMT) has dramatically benefited medical professionals that patients and physicians can access from all regions. Although the automatic detection and prediction of diseases such as melanoma and leukemia is still being investigated and studied in IoMT, existing approaches are not able to achieve a high degree of efficiency. Thus, with a new approach that provides better results, patients would access the adequate treatments earlier and the death rate would be reduced. Therefore, this paper introduces an IoMT proposal for medical images' classification that may be used anywhere, i.e., it is an ubiquitous approach. It was designed in two stages: first, we employ a transfer learning (TL)-based method for feature extraction, which is carried out using MobileNetV3; second, we use the chaos game optimization (CGO) for feature selection, with the aim of excluding unnecessary features and improving the performance, which is key in IoMT. Our methodology was evaluated using ISIC-2016, PH2, and Blood-Cell datasets. The experimental results indicated that the proposed approach obtained an accuracy of 88.39% on ISIC-2016, 97.52% on PH2, and 88.79% on Blood-cell datsets. Moreover, our approach had successful performances for the metrics employed compared to other existing methods.


Assuntos
Melanoma , Neoplasias Cutâneas , Algoritmos , Humanos , Internet , Aprendizado de Máquina , Neoplasias Cutâneas/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA