Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Transl Med ; 18(1): 316, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32799890

RESUMO

BACKGROUND: Antibody based cancer therapies have achieved convincing success rates combining enhanced tumor specificity and reduced side effects in patients. Trastuzumab that targets the human epidermal growth factor related receptor 2 (HER2) is one of the greatest success stories in this field. For decades, trastuzumab based treatment regimens are significantly improving the prognosis of HER2-positive breast cancer patients both in the metastatic and the (neo-) adjuvant setting. Nevertheless, ≥ 50% of trastuzumab treated patients experience de-novo or acquired resistance. Therefore, an enhanced anti-HER2 targeting with improved treatment efficiency is still aspired. METHODS: Here, we determined cellular and molecular mechanisms involved in the treatment of HER2-positive BC cells with a new rabbit derived HER2 specific chimeric monoclonal antibody called "B100″. We evaluated the B100 treatment efficiency of HER2-positive BC cells with different sensitivity to trastuzumab both in vitro and in the presence of a human immune system in humanized tumor mice. RESULTS: B100 not only efficiently blocks cell proliferation but more importantly induces apoptotic tumor cell death. Detailed in vitro analyses of B100 in comparison to trastuzumab (and pertuzumab) revealed equivalent HER2 internalization and recycling capacity, similar Fc receptor signaling, but different HER2 epitope recognition with high binding and treatment efficiency. In trastuzumab resistant SK-BR-3 based humanized tumor mice the B100 treatment eliminated the primary tumor but even more importantly eradicated metastasized tumor cells in lung, liver, brain, and bone marrow. CONCLUSION: Overall, B100 demonstrated an enhanced anti-tumor activity both in vitro and in an enhanced preclinical HTM in vivo model compared to trastuzumab or pertuzumab. Thus, the use of B100 is a promising option to complement and to enhance established treatment regimens for HER2-positive (breast) cancer and to overcome trastuzumab resistance. Extended preclinical analyses using appropriate models and clinical investigations are warranted.


Assuntos
Neoplasias da Mama , Animais , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Coelhos , Receptor ErbB-2 , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
2.
Arch Microbiol ; 195(4): 269-78, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23430123

RESUMO

This work reports the preparation of two recombinant strains each containing two enzymatic activities mutually expressed through regulated systems for production of functionalized epoxides in one-pot reactions. One strain was Pseudomonas putida PaW340, containing the gene coding for styrene monooxygenase (SMO) from Pseudomonas fluorescens ST under the auto-inducing Ptou promoter and the TouR regulator of Pseudomonas sp. OX1 and the gene coding for naphthalene dihydrodiol dehydrogenase (NDDH) from P. fluorescens N3 under the Ptac promoter inducible by IPTG. The second strain was Escherichia coli JM109, in which the expression of SMO was under the control of the Pnah promoter and the NahR regulator of P. fluorescens N3 inducible by salicylate, while the gene expressing NDDH was under the control of the Plac promoter inducible by IPTG. SMO and NDDH activities were tested in bioconversion experiments using cinnamyl alcohol as reference substrate. The application that we selected is one example of the sequential use of the two enzymatic activities which require a temporal control of the expression of both genes.


Assuntos
Escherichia coli/genética , Expressão Gênica , Microbiologia Industrial , Propanóis/metabolismo , Pseudomonas putida/genética , Oxirredutases/genética , Oxigenases/genética , Regiões Promotoras Genéticas , Pseudomonas fluorescens/classificação , Pseudomonas fluorescens/enzimologia , Pseudomonas fluorescens/genética , Pseudomonas putida/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA