Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 88(2): 168-176, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38093456

RESUMO

Among the branched-chain amino acids, leucine and isoleucine have been well studied for their roles in improving mitochondrial function and reducing oxidative stress. However, role of valine in mitochondrial function regulation and oxidative stress management remains elusive. This study investigated valine effect on mitochondrial function and oxidative stress in vitro. Valine increased expression of genes involved in mitochondrial biogenesis and dynamics. It upregulates mitochondrial function at complexes I, II, and IV levels of electron transport chain. Flow cytometry studies revealed, valine reduced oxidative stress by significantly lowering mitochondrial reactive oxygen species and protein expression of 4-hydroxynonenal. Functional role of valine against oxidative stress was analyzed by XFe96 Analyzer. Valine sustained oxidative phosphorylation and improved ATP generation rates during oxidative stress. In conclusion, our findings shed more light on the critical function of valine in protecting mitochondrial function thereby preventing mitochondrial/cellular damage induced by oxidative stress.


Assuntos
Aminoácidos de Cadeia Ramificada , Valina , Valina/farmacologia , Valina/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Isoleucina/metabolismo , Isoleucina/farmacologia , Leucina/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674463

RESUMO

Porphyromonas gingivalis (P. gingivalis), a key pathogen in periodontitis, is associated with neuroinflammation. Periodontal disease increases with age; 70.1% of adults 65 years and older have periodontal problems. However, the P. gingivalis- lipopolysaccharide (LPS)induced mitochondrial dysfunction in neurodegenerative diseases remains elusive. In this study, we investigated the possible role of P. gingivalis-LPS in mitochondrial dysfunction during neurodegeneration. We found that P. gingivalis-LPS treatment activated toll-like receptor (TLR) 4 signaling and upregulated the expression of Alzheimer's disease-related dementia and neuroinflammatory markers. Furthermore, the LPS treatment significantly exacerbated the production of reactive oxygen species and reduced the mitochondrial membrane potential. Our study highlighted the pivotal role of P. gingivalis-LPS in the repression of serum response factor (SRF) and its co-factor p49/STRAP that regulate the actin cytoskeleton. The LPS treatment repressed the genes involved in mitochondrial function and biogenesis. P. gingivalis-LPS negatively altered oxidative phosphorylation and glycolysis and reduced total adenosine triphosphate (ATP) production. Additionally, it specifically altered the mitochondrial functions in complexes I, II, and IV of the mitochondrial electron transport chain. Thus, it is conceivable that P. gingivalis-LPS causes mitochondrial dysfunction through oxidative stress and inflammatory events in neurodegenerative diseases.


Assuntos
Lipopolissacarídeos , Doenças Neuroinflamatórias , Humanos , Adulto , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Porphyromonas gingivalis/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232837

RESUMO

CCG-1423 is a Rho A pathway inhibitor that has been reported to inhibit Rho/SRF-mediated transcriptional regulation. Serum response factor and its cofactors, which include ternary complex factors and myocardin-related transcription factors, regulate various cellular functions. In this study, we observed that CCG-1423 modulates the mitochondrial functions. The effect of this small molecule drug was determined by measuring mitochondrial function using an XFe96 Analyzer and an Oxygraph 2k (O2k) high-resolution respirometer. CCG-1423 treatment significantly reduced oxidative phosphorylation in a dose-dependent manner. However, CCG-1423 increased the glycolytic rate. We also observed that histone 4 at lysine-16 underwent hyperacetylation with the treatment of this drug. Immunolabeling with F-actin and MitoTracker revealed the alteration in the actin cytoskeleton and mitochondria. Taken together, our findings highlight a critical role of CCG-1423 in inhibiting the transcription of SRF/p49 and PGC-1α, ß, resulting in the downregulation of mitochondrial genes, leading to the repression of mitochondrial oxidative phosphorylation and overall ATP reduction. This study provides a better understanding of the effects of CCG-1423 on mitochondria, which may be useful for the assessment of the potential clinical application of CCG-1423 and its derivatives.


Assuntos
Actinas , Fator de Resposta Sérica , Actinas/metabolismo , Trifosfato de Adenosina , Anilidas , Benzamidas , Histonas , Lisina , Mitocôndrias/metabolismo , Fatores de Complexo Ternário/metabolismo , Fatores de Transcrição/metabolismo
4.
Antioxidants (Basel) ; 10(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34439520

RESUMO

Kidneys from deceased donors undergo cold storage (CS) preservation before transplantation. Although CS is a clinical necessity for extending organ quality preservation, CS causes mitochondrial and renal injury. Specifically, many studies, including our own, have shown that the triggering event of CS-induced renal injury is mitochondrial reactive oxygen species (mROS). Here, we explored the role of OMA1-depedent OPA1 proteolytic processing in rat kidney proximal tubular epithelial (NRK) cells in an in vitro model of renal CS (18 h), followed by rewarming (6 h) (CS + RW). The involvement of mROS was evaluated by stably overexpressing manganese superoxide dismutase (MnSOD), an essential mitochondrial antioxidant enzyme, in NRK cells. Western blots detected rapid OPA1 proteolytic processing and a decrease in ATP-dependent cell viability in NRK cells subjected to CS + RW compared to control cells. Small interfering RNA (siRNA) knockdown of OMA1 reduced proteolytic processing of OPA1, suggesting that OMA1 is responsible for OPA1 proteolytic processing during CS + RW-induced renal injury. Overexpression of MnSOD during CS + RW reduced cell death, mitochondrial respiratory dysfunction, and ATP-dependent cell viability, but it did not prevent OMA1-dependent OPA1 processing. These data show for the first time that OMA1 is responsible for proteolytically cleaving OPA1 in a redox-independent manner during renal cell CS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA