Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34266950

RESUMO

Despite the ubiquitous importance of cell contact guidance, the signal-inducing contact guidance of mammalian cells in an aligned fibril network has defied elucidation. This is due to multiple interdependent signals that an aligned fibril network presents to cells, including, at least, anisotropy of adhesion, porosity, and mechanical resistance. By forming aligned fibrin gels with the same alignment strength, but cross-linked to different extents, the anisotropic mechanical resistance hypothesis of contact guidance was tested for human dermal fibroblasts. The cross-linking was shown to increase the mechanical resistance anisotropy, without detectable change in network microstructure and without change in cell adhesion to the cross-linked fibrin gel. This methodology thus isolated anisotropic mechanical resistance as a variable for fixed anisotropy of adhesion and porosity. The mechanical resistance anisotropy |Y*| -1 - |X*| -1 increased over fourfold in terms of the Fourier magnitudes of microbead displacement |X*| and |Y*| at the drive frequency with respect to alignment direction Y obtained by optical forces in active microrheology. Cells were found to exhibit stronger contact guidance in the cross-linked gels possessing greater mechanical resistance anisotropy: the cell anisotropy index based on the tensor of cell orientation, which has a range 0 to 1, increased by 18% with the fourfold increase in mechanical resistance anisotropy. We also show that modulation of adhesion via function-blocking antibodies can modulate the guidance response, suggesting a concomitant role of cell adhesion. These results indicate that fibroblasts can exhibit contact guidance in aligned fibril networks by sensing anisotropy of network mechanical resistance.


Assuntos
Adesão Celular , Fibroblastos/química , Anisotropia , Fenômenos Biomecânicos , Fibrina/química , Fibrina/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Porosidade , Estresse Mecânico
2.
J Clin Monit Comput ; 36(2): 537-543, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33837904

RESUMO

Lactate levels are commonly used as an indirect measure to assess metabolic stress in clinical conditions like sepsis. Dynamic lactate measurements are recommended to assess and guide treatment in patients with shock and other critical care conditions. A minimally invasive, continuous lactate monitor has potential to improve clinical decisions and patient care. The purpose of the study was to evaluate continuous lactate measurements of a novel enzymatic Continuous Lactate Monitor (CLM) developed in our laboratory. Lactate levels were monitored during incremental cycling exercise challenges as a tool for hyperlactatemia. Six healthy individuals 18-45 y/o (4 males, 2 females) participated in the study. CLM devices were inserted subcutaneously in the postero-lateral trunk below the renal angle, one hour before the exercise challenge. Each exercise challenge consisted of a 3 to 12-min warm up period, followed by up to 7, 4-min incremental workload bouts separated by rest intervals. Continuous lactate measurements obtained from CLM were compared with commercial lactate analyzer (Abbott iSTAT) measurements of venous blood (plasma) drawn from the antecubital vein. Blood was drawn at up to 25 time points spanning the duration of before exercise, during exercise, and up to 120 min post exercise. Area under the curve (AUC), and delay time were calculated to compare the CLM readings with plasma lactate concentration. Average plasma lactate concentration increased from 1.02 to 16.21 mM. Ratio of AUC derived from CLM to plasma lactate was 1.025 (0.990-1.058). Average dynamic delay time of CLM to venous plasma lactate was 5.22 min (2.87-10.35). Insertion sites examined 48 h after CLM removal did not show signs of side effects and none required medical attention upon examination. The newly developed CLM has shown to be a promising tool to continuously measure lactate concentration in a minimally invasive fashion. Results indicate the CLM can provide needed trends in lactate over time. Such a device may be used in the future to improve treatment in clinical conditions such as sepsis.


Assuntos
Sepse , Choque , Cuidados Críticos , Feminino , Humanos , Ácido Láctico , Masculino , Monitorização Fisiológica
4.
Chem Soc Rev ; 45(7): 1865-78, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26463830

RESUMO

Vibrational spectroscopy, both infrared absorption and Raman spectroscopy, have attracted increasing attention for biomedical applications, from in vivo and ex vivo disease diagnostics and screening, to in vitro screening of therapeutics. There remain, however, many challenges related to the accuracy of analysis of physically and chemically inhomogeneous samples, across heterogeneous sample sets. Data preprocessing is required to deal with variations in instrumental responses and intrinsic spectral backgrounds and distortions in order to extract reliable spectral data. Data postprocessing is required to extract the most reliable information from the sample sets, based on often very subtle changes in spectra associated with the targeted pathology or biochemical process. This review presents the current understanding of the factors influencing the quality of spectra recorded and the pre-processing steps commonly employed to improve on spectral quality. It further explores some of the most common techniques which have emerged for classification and analysis of the spectral data for biomedical applications. The importance of sample presentation and measurement conditions to yield the highest quality spectra in the first place is emphasised, as is the potential of model simulated datasets to validate both pre- and post-processing protocols.


Assuntos
Células/patologia , Espectrofotometria Infravermelho/métodos , Análise Espectral Raman/métodos , Pesquisa Biomédica , Humanos
5.
Analyst ; 140(7): 2482-92, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25558476

RESUMO

Raman spectroscopy is fast becoming a valuable analytical tool in a number of biomedical scenarios, most notably disease diagnostics. Importantly, the technique has also shown increasing promise in the assessment of drug interactions on cellular and subcellular levels, particularly when coupled with multivariate statistical analysis. However, with respect to both Raman spectroscopy and the associated statistical methodologies, an important consideration is the accuracy of these techniques and more specifically, the sensitivities which can be achieved, and ultimately the limits of detection of the various methods. The purpose of this study is thus the construction of a model simulated dataset with the aim of testing the accuracy and sensitivity of the partial least squares regression (PLSR) approach to spectral analysis. The basis of the dataset is the experimental spectral profiles of a previously reported Raman spectroscopic analysis of the interaction of the cancer chemotherapeutic agent cisplatin in an adenocarcinomic human alveolar basal epithelial cell-line, in vitro, and is thus reflective of actual experimental data. The simulated spectroscopic data are constructed by adding known perturbations which are independently linear in drug doses as well as cytological responses experimentally determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay. It is demonstrated that, through appropriate choice of dose range, PLSR against the respective targets can differentiate between the spectroscopic signatures of the direct chemical effect of the drug dose and the indirect cytological effect it produces.


Assuntos
Modelos Estatísticos , Análise Espectral Raman , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Humanos , Análise dos Mínimos Quadrados , Análise Multivariada
6.
Nat Med ; 13(8): 962-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17632525

RESUMO

Adult mammalian hearts respond to injury with scar formation and not with cardiomyocyte proliferation, the cellular basis of regeneration. Although cardiogenic progenitor cells may maintain myocardial turnover, they do not give rise to a robust regenerative response. Here we show that extracellular periostin induced reentry of differentiated mammalian cardiomyocytes into the cell cycle. Periostin stimulated mononucleated cardiomyocytes to go through the full mitotic cell cycle. Periostin activated alphaV, beta1, beta3 and beta5 integrins located in the cardiomyocyte cell membrane. Activation of phosphatidylinositol-3-OH kinase was required for periostin-induced reentry of cardiomyocytes into the cell cycle and was sufficient for cell-cycle reentry in the absence of periostin. After myocardial infarction, periostin-induced cardiomyocyte cell-cycle reentry and mitosis were associated with improved ventricular remodeling and myocardial function, reduced fibrosis and infarct size, and increased angiogenesis. Thus, periostin and the pathway that it regulates may provide a target for innovative strategies to treat heart failure.


Assuntos
Moléculas de Adesão Celular/farmacologia , Diferenciação Celular , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Animais , Moléculas de Adesão Celular/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , DNA/biossíntese , Fibrose/tratamento farmacológico , Fibrose/patologia , Humanos , Hipertrofia/tratamento farmacológico , Hipertrofia/patologia , Integrinas/metabolismo , Masculino , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Wistar
7.
Analyst ; 137(24): 5792-802, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23114273

RESUMO

Spectral cross-correlation is introduced as a methodology to identify the presence and subcellular distribution of nanoparticles in cells. Raman microscopy is employed to spectroscopically image biological cells previously exposed to polystyrene nanoparticles, as a model for the study of nano-bio interactions. The limitations of previously deployed strategies of K-means clustering analysis and principal component analysis are discussed and a novel methodology of spectral cross-correlation analysis is introduced and compared with the performance of classical least squares analysis, in both unsupervised and supervised modes. The previous study demonstrated the feasibility of using Raman spectroscopy to map cells and identify polystyrene nanoparticles in a lipid rich environment, which is suggestive of the membrane rich endoplasmic reticulum. However, short comings in identification of all nanoparticle signatures in the cell using K-means clustering are apparent, as highlighted by principal component analysis of the identified clusters which demonstrates that K-means clustering does not identify all regions where spectral signatures of the nanoparticles are evident. Thus, two more sophisticated analytical approaches to the extraction of the nanoparticle signatures from the Raman spectral datasets, namely classical least squares analysis and cross-correlation analysis, were employed and are demonstrated to improve the identification of spectroscopic signatures characteristic of polystyrene nanoparticles in a cellular environment. Additionally, to investigate the local biochemical environment in which the nanoparticles are trafficked, a pure spectrum of 3-sn-phosphatidyl ethanolamine was cross-correlated against the Raman dataset, further suggesting the particles are indeed localized in a lipid rich environment. Furthermore, to demonstrate the robustness and versatility of the analysis method, a spectrum of pure RNA was used to demonstrate that a differentiation could be made between DNA of the nucleus and RNA of the nucleolus using the supervised spectral cross-correlation technique.


Assuntos
Nanopartículas , Análise Espectral Raman/métodos , Estatística como Assunto/métodos , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Poliestirenos/química , Poliestirenos/metabolismo , Análise de Célula Única
8.
ACS Sens ; 7(2): 441-452, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35175733

RESUMO

Clinical research shows that frequent measurements of both pH and lactate can help guide therapy and improve patient outcome. However, current methods of sampling blood pH and lactate make it impractical to take readings frequently (due to the heightened risk of blood infection and anemia). As a solution, we have engineered a subcutaneous pH and lactate sensor (PALS) that can provide continuous, physiologically relevant measurements. To measure pH, a sheet containing a pH-sensitive fluorescent dye is placed over 400 and 465 nm light-emitting diodes (LEDs) and a filter-coated photodetector. The filter-coated photodetector collects an emitted signal from the dye for each LED excitation, and the ratio of the emitted signals is used to monitor pH. To measure lactate, two sensing sheets comprising an oxygen-sensitive phosphorescent dye are each mounted to a 625 nm LED. One sheet additionally comprises the enzyme lactate oxidase. The LEDs are sequentially modulated to excite the sensing sheets, and their phase shift at the LED drive frequency is used to monitor lactate. In vitro results indicate that PALS successfully records pH changes from 6.92 to 7.70, allowing for discrimination between acidosis and alkalosis, and can track lactate levels up to 9 mM. Both sensing strategies exhibit fast rise times (< 5 min) and stable measurements. Multianalyte in vitro models of physiological disorders show that the sensor measurements consistently quantify the expected pathophysiological trends without cross talk; in vivo rabbit testing further indicates usefulness in the clinical setting.


Assuntos
Ácido Láctico , Oxigênio , Animais , Corantes Fluorescentes , Concentração de Íons de Hidrogênio , Monitorização Fisiológica , Coelhos
9.
Nat Biotechnol ; 40(10): 1500-1508, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35654979

RESUMO

Therapeutics based on short interfering RNAs (siRNAs) delivered to hepatocytes have been approved, but new delivery solutions are needed to target additional organs. Here we show that conjugation of 2'-O-hexadecyl (C16) to siRNAs enables safe, potent and durable silencing in the central nervous system (CNS), eye and lung in rodents and non-human primates with broad cell type specificity. We show that intrathecally or intracerebroventricularly delivered C16-siRNAs were active across CNS regions and cell types, with sustained RNA interference (RNAi) activity for at least 3 months. Similarly, intravitreal administration to the eye or intranasal administration to the lung resulted in a potent and durable knockdown. The preclinical efficacy of an siRNA targeting the amyloid precursor protein was evaluated through intracerebroventricular dosing in a mouse model of Alzheimer's disease, resulting in amelioration of physiological and behavioral deficits. Altogether, C16 conjugation of siRNAs has the potential for safe therapeutic silencing of target genes outside the liver with infrequent dosing.


Assuntos
Precursor de Proteína beta-Amiloide , Terapêutica com RNAi , Animais , Camundongos , Primatas/genética , Primatas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico
10.
Curr Biol ; 17(16): 1390-5, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17683938

RESUMO

Vertebrate limb regeneration occurs in anamniotes such as newts, salamanders, and zebrafish. After appendage amputation, the resection site is covered by a wound epidermis capping the underlying mature tissues of the stump from which the blastema emerges. The blastema is a mass of progenitor cells that constitute an apical growth zone. During outgrowth formation, the proximal blastemal cells progressively leave the zone and undergo the differentiation that results in the replacement of the amputated structures. Little is known about the mechanisms triggering regenerative events after injury. The zebrafish caudal fin provides a valuable model to study the mechanisms of regeneration. Zebrafish blastemal cells express specific genes, such as the homeobox-containing transcription factors msxB and msxC, and secreted signal FGF20a. In this study, we set out to identify signals that are transcriptionally upregulated after fin amputation and before blastema formation. Accordingly, a gene encoding a TGFbeta-related ligand, activin-betaA (actbetaA), was found to be strongly induced within 6 hr after fin amputation at the wound margin, and later in the blastema. Inhibition of Activin signaling through two specific chemical inhibitors, SB431542 and SB505124, lead to the early and complete block of regeneration. The morpholino knockdown of actbetaA and its receptor alk4 impaired the progression of regeneration. Closer examination of the phenotype revealed that Activin signaling is necessary for cell migration during wound healing and blastemal proliferation. These findings reveal a role of Activin-betaA signaling in the tissue repair after injury and subsequent outgrowth formation during epigenetic regeneration of the vertebrate appendage.


Assuntos
Ativinas/metabolismo , Inibinas/metabolismo , Regeneração , Transdução de Sinais , Peixe-Zebra/metabolismo , Ativinas/genética , Animais , Inibinas/genética , Transcrição Gênica , Regulação para Cima
11.
PLoS Biol ; 4(8): e260, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16869712

RESUMO

Mammalian hearts cannot regenerate. In contrast, zebrafish hearts regenerate even when up to 20% of the ventricle is amputated. The mechanism of zebrafish heart regeneration is not understood. To systematically characterize this process at the molecular level, we generated transcriptional profiles of zebrafish cardiac regeneration by microarray analyses. Distinct gene clusters were identified based on temporal expression patterns. Genes coding for wound response/inflammatory factors, secreted molecules, and matrix metalloproteinases are expressed in regenerating heart in sequential patterns. Comparisons of gene expression profiles between heart and fin regeneration revealed a set of regeneration core molecules as well as tissue-specific factors. The expression patterns of several secreted molecules around the wound suggest that they play important roles in heart regeneration. We found that both platelet-derived growth factor-a and -b (pdgf-a and pdgf-b) are upregulated in regenerating zebrafish hearts. PDGF-B homodimers induce DNA synthesis in adult zebrafish cardiomyocytes. In addition, we demonstrate that a chemical inhibitor of PDGF receptor decreases DNA synthesis of cardiomyocytes both in vitro and in vivo during regeneration. Our data indicate that zebrafish heart regeneration is associated with sequentially upregulated wound healing genes and growth factors and suggest that PDGF signaling is required.


Assuntos
Coração/fisiologia , Regeneração/genética , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Becaplermina , Proliferação de Células , Perfilação da Expressão Gênica , Genes sis , Mediadores da Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Dados de Sequência Molecular , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-sis , Transdução de Sinais , Regulação para Cima , Proteínas de Peixe-Zebra/metabolismo
12.
Acta Biomater ; 87: 88-96, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30660778

RESUMO

Fibrin hydrogels are used as a model system for studying cell-ECM biophysical interactions. Bulk mechanical stiffness of these hydrogels has been correlated to mechanotransduction and downstream signaling. However, stiffness values proximal to cells can vary by orders of magnitude at the length scale of microns. Patterning of matrix stiffness at this spatial scale can be useful in studying such interactions. Here we present and evaluate a technique to selectively stiffen defined regions within a fibrin hydrogel. Laser scanning illumination activates ruthenium-catalyzed crosslinking of fibrin tyrosine residues, resulting in tunable stiffness changes spanning distances as small as a few microns and a localized compaction of the material. As probed by active microrheology, stiffness increases by as much as 25X, similar to previously observed stiffness changes around single cells in 3D culture. In summary, our method allows for selective modification of fibrin stiffness at the micron scale with the potential to create complex patterns, which could be valuable for the investigation of mechanotransduction in a biologically meaningful way. STATEMENT OF SIGNIFICANCE: Fibrin hydrogels are used as a naturally derived model to study interactions between cells and their surrounding extracellular matrix (ECM). ECM stiffness influences cell state. Cells in 3D culture considerably modify the stiffness of their pericellular space, which can be quite heterogeneous at the micron-scale. Here we present and evaluate a method to pattern stiffness within fibrin hydrogels using a laser scanning confocal microscope and selective photo crosslinking. We believe that this technique can aid future studies of cell-ECM interactions by enabling researchers to modify the pericellular distribution of stiffness.


Assuntos
Reagentes de Ligações Cruzadas/química , Fibrina , Fibroblastos/metabolismo , Hidrogéis , Mecanotransdução Celular/efeitos dos fármacos , Processos Fotoquímicos , Fibrina/química , Fibrina/farmacologia , Fibroblastos/citologia , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Teste de Materiais , Porosidade
13.
APL Bioeng ; 3(1): 016103, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31069336

RESUMO

Macrophages are versatile cells of the innate immune system that can adopt a variety of functional phenotypes depending on signals in their environment. In previous work, we found that culture of macrophages on fibrin, the provisional extracellular matrix protein, inhibits their inflammatory activation when compared to cells cultured on polystyrene surfaces. Here, we sought to investigate the role of matrix stiffness in the regulation of macrophage activity by manipulating the mechanical properties of fibrin. We utilize a photo-initiated crosslinking method to introduce dityrosine crosslinks to a fibrin gel and confirm an increase in gel stiffness through active microrheology. We observe that matrix crosslinking elicits distinct changes in macrophage morphology, integrin expression, migration, and inflammatory activation. Macrophages cultured on a stiffer substrate exhibit greater cell spreading and expression of αM integrin. Furthermore, macrophages cultured on crosslinked fibrin exhibit increased motility. Finally, culture of macrophages on photo-crosslinked fibrin enhances their inflammatory activation compared to unmodified fibrin, suggesting that matrix crosslinking regulates the functional activation of macrophages. These findings provide insight into how the physical properties of the extracellular matrix might control macrophage behavior during inflammation and wound healing.

14.
Cardiovasc Res ; 75(4): 748-57, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17568571

RESUMO

OBJECTIVE: Andersen syndrome (AS) is a rare genetic disease caused by mutations of the potassium channel Kir2.1 (KCNJ2). We identified two unrelated patients with mutations in the slide helix of Kir2.1 leading to AS. The functional consequences of these two mutations, Y68D and D78Y, were studied and compared with previously reported slide helix mutations. METHODS: Channel function and surface expression were studied by voltage clamp recordings and a chemiluminescence assay in Xenopus laevis oocytes and by patch clamp recordings and fluorescence microscopy in HEK293 cells. In addition, a phosphatidylinositol bisphosphate (PIP(2)) binding assay and a yeast-two-hybrid assay were used to characterize the molecular mechanisms by which slide helix mutations cause AS. RESULTS: Neither mutant channel produced any current, but both had dominant negative effects on Kir2.2, Kir2.3, and Kir2.4 channels. We show that Y68D, D78Y, and previously reported AS mutations are clustered on the hydrophilic, cytosolic side of the slide helix and traffic normally to the plasma membrane. The in vitro lipid binding assay indicated that Y68D or D78Y N-terminal peptides bind PIP(2) similar to wild-type peptides. Yeast-two-hybrid assays showed that AS-associated mutations disturb the interaction between the slide helix and the C-terminal domain of the channel protein. CONCLUSION: Our experiments indicate a new disease-causing mechanism independent of trafficking and PIP(2) binding defects. Our findings suggest that the hydrophilic side of the slide helix interacts with a specific domain of the C-terminus facing the membrane. This interaction, which may be required for normal gating both in homomeric and heteromeric Kir2 channels, is disturbed by several mutations causing AS.


Assuntos
Síndrome de Andersen/genética , Ativação do Canal Iônico/genética , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Adulto , Síndrome de Andersen/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Análise Mutacional de DNA , Feminino , Expressão Gênica , Humanos , Microscopia de Fluorescência , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Canais de Potássio Corretores do Fluxo de Internalização/análise , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Técnicas do Sistema de Duplo-Híbrido , Xenopus
15.
Biomaterials ; 162: 99-108, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29438884

RESUMO

Matrix stiffness is a well-established instructive cue in two-dimensional cell cultures. Its roles in morphogenesis in 3-dimensional (3D) cultures, and the converse effects of cells on the mechanics of their surrounding microenvironment, have been more elusive given the absence of suitable methods to quantify stiffness on a length-scale relevant for individual cell-extracellular matrix (ECM) interactions. In this study, we applied traditional bulk rheology and laser tweezers-based active microrheology to probe mechanics across length scales during the complex multicellular process of capillary morphogenesis in 3D, and further characterized the relative contributions of neovessels and supportive stromal cells to dynamic changes in stiffness over time. Our data show local ECM stiffness was highly heterogeneous around sprouting capillaries, and the variation progressively increased with time. Both endothelial cells and stromal support cells progressively stiffened the ECM, with the changes in bulk properties dominated by the latter. Interestingly, regions with high micro-stiffness did not necessarily correlate with remodeled regions of high ECM density as shown by confocal reflectance microscopy. Collectively, these findings, especially the large spatiotemporal variations in local stiffness around cells during morphogenesis in soft 3D fibrin gels, underscore that characterizing ECM mechanics across length scales. provides an opportunity to attain a deeper mechanobiological understanding of the microenvironment's roles in cell fate and tissue patterning.


Assuntos
Matriz Extracelular/química , Hidrogéis/química , Técnicas de Cultura de Células , Fibrina/química , Fibroblastos/citologia , Humanos , Microscopia Confocal , Pinças Ópticas
16.
Chem Biol ; 13(9): 957-63, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16984885

RESUMO

The maintenance of self-renewal in stem cells appears to be distinct from the induction of proliferation of the terminally differentiated mammalian cardiomyocytes because it is believed that the latter are unable to divide. However, proliferation is a necessary step in both processes. Interestingly, the small molecule 6-bromoindirubin-3'-oxime (BIO) is the first pharmacological agent shown to maintain self-renewal in human and mouse embryonic stem cells. To determine whether a molecule that can maintain stem cell properties can also participate in controlling the proliferative capability of the highly differentiated cardiomyocytes, we examine the effect of BIO in postmitotic cardiac cells. Here, we show that BIO promotes proliferation in mammalian cardiomyocytes. Our demonstration of a second role for BIO suggests that the maintenance of stem cell self-renewal and the induction of proliferation in differentiated cardiomyocytes may share common molecular pathways.


Assuntos
Proliferação de Células/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Indóis/farmacologia , Miócitos Cardíacos/citologia , Oximas/farmacologia , Animais , Animais Recém-Nascidos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Masculino , Mitose , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
17.
J Tissue Eng ; 8: 2041731417691645, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28228933

RESUMO

Success of cell therapy in avascular sites will depend on providing sufficient blood supply to transplanted tissues. A popular strategy of providing blood supply is to embed cells within a functionalized hydrogel implanted within the host to stimulate neovascularization. However, hydrogel systems are not always amenable for removal post-transplantation; thus, it may be advantageous to implant a device that contains cells while also providing access to the circulation so retrieval is possible. Here we investigate one instance of providing access to a vessel network, a thin sheet with through-cut slits, and determine if it can be vascularized from autologous materials. We compared the effect of slit width on vascularization of a thin sheet following subcutaneous implantation into an animal model. Polydimethylsiloxane sheets with varying slit widths (approximately 150, 300, 500, or 1500 µm) were fabricated from three-dimensional printed molds. Subcutaneous implantation of sheets in immunodeficient mice revealed that smaller slit widths have evidence of angiogenesis and new tissue growth, while larger slit widths contain native mature tissue squeezing into the space. Our results show that engineered slit sheets may provide a simple approach to cell transplantation by providing a prevascularized and innervated environment.

18.
Biomaterials ; 116: 118-129, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27914984

RESUMO

Extracellular matrix (ECM) is an essential and dynamic component of all tissues and directly affects cellular behavior by providing both mechanical and biochemical signaling cues. Changes in ECM can alter tissue homeostasis, potentially leading to promotion of cellular transformation and the generation of tumors. Therefore, understanding ECM compositional changes during cancer progression is vital to the development of targeted treatments. Previous efforts to reproduce the native 3D cellular microenvironment have utilized protein gels and scaffolds that incompletely recapitulate the complexity of native tissues. Here, we address this problem by extracting and comparing ECM from normal human colon and colon tumor that had metastasized to liver. We found differences in protein composition and stiffness, and observed significant differences in vascular network formation and tumor growth in each of the reconstituted matrices, both in vitro and in vivo. We studied free/bound ratios of NADH in the tumor and endothelial cells using Fluorescence Lifetime Imaging Microscopy as a surrogate for the metabolic state of the cells. We observed that cells seeded in tumor ECM had higher relative levels of free NADH, consistent with a higher glycolytic rate, than those seeded in normal ECM. These results demonstrate that the ECM plays an important role in the growth of cancer cells and their associated vasculature.


Assuntos
Neoplasias do Colo/patologia , Neoplasias do Colo/fisiopatologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Neovascularização Patológica/patologia , Neovascularização Patológica/fisiopatologia , Microambiente Tumoral , Proliferação de Células , Neoplasias do Colo/irrigação sanguínea , Humanos , Células Tumorais Cultivadas
19.
ScientificWorldJournal ; 6 Suppl 1: 38-54, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-17205186

RESUMO

Regeneration of severed limbs in adult animals is restricted to urodele amphibians. Mammals, including humans, have very limited regenerative capabilities and even with proper treatment, only the tips of our digits can grow back. Teleost fish can regenerate amputated fins, the evolutionary ancestors of limbs. To elucidate the principles of limb-fin regeneration, we performed an Affymetrix microarray screen on regenerating caudal fins 12, 24, 48, and 72 h post amputation. Approximately 15,000 zebrafish transcripts were analyzed, identifying 829 transcripts as differentially expressed during regeneration. Of those, 563 were up-regulated and 266 were down-regulated. We constructed a comprehensive database containing expression data, functional assignment, and background information from the literature for each differentially expressed transcript. In order to validate our findings, we employed three approaches: (1) microarray expression analysis of genes previously implicated in fin regeneration, (2) RT-PCR analysis of genes newly identified as differentially expressed during regeneration, and (3) in situ hybridization of the up-regulated genes bambi, dlx5A, and her6. Moreover, we show that Smad 1/5/8 proteins, effector molecules of Bmp signaling, are phosphorylated during fin regeneration. Taken together, we provide a comprehensive database of fin regeneration that will serve as an important tool for understanding the molecular mechanisms of regeneration.


Assuntos
Regulação da Expressão Gênica , Regeneração/genética , Cauda/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bases de Dados Genéticas , Epiderme/metabolismo , Feminino , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Mesoderma/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Proteínas Smad/metabolismo , Cauda/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Cicatrização/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
Tissue Eng Part A ; 22(15-16): 1016-25, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27392582

RESUMO

Pluripotent stem cell-derived cardiomyocytes (CMs) have great potential in the development of new therapies for cardiovascular disease. In particular, human induced pluripotent stem cells (iPSCs) may prove especially advantageous due to their pluripotency, their self-renewal potential, and their ability to create patient-specific cell lines. Unfortunately, pluripotent stem cell-derived CMs are immature, with characteristics more closely resembling fetal CMs than adult CMs, and this immaturity has limited their use in drug screening and cell-based therapies. Extracellular matrix (ECM) influences cellular behavior and maturation, as does the geometry of the environment-two-dimensional (2D) versus three-dimensional (3D). We therefore tested the hypothesis that native cardiac ECM and 3D cultures might enhance the maturation of iPSC-derived CMs in vitro. We demonstrate that maturation of iPSC-derived CMs was enhanced when cells were seeded into a 3D cardiac ECM scaffold, compared with 2D culture. 3D cardiac ECM promoted increased expression of calcium-handling genes, Junctin, CaV1.2, NCX1, HCN4, SERCA2a, Triadin, and CASQ2. Consistent with this, we find that iPSC-derived CMs in 3D adult cardiac ECM show increased calcium signaling (amplitude) and kinetics (maximum upstroke and downstroke) compared with cells in 2D. Cells in 3D culture were also more responsive to caffeine, likely reflecting an increased availability of calcium in the sarcoplasmic reticulum. Taken together, these studies provide novel strategies for maturing iPSC-derived CMs that may have applications in drug screening and transplantation therapies to treat heart disease.


Assuntos
Antígenos de Diferenciação/biossíntese , Matriz Extracelular/química , Células-Tronco Pluripotentes Induzidas/metabolismo , Miocárdio/química , Miócitos Cardíacos/metabolismo , Alicerces Teciduais/química , Animais , Bovinos , Técnicas de Cocultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA