Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35099536

RESUMO

Genes involved in spermatogenesis tend to evolve rapidly, but we lack a clear understanding of how protein sequences and patterns of gene expression evolve across this complex developmental process. We used fluorescence-activated cell sorting (FACS) to generate expression data for early (meiotic) and late (postmeiotic) cell types across 13 inbred strains of mice (Mus) spanning ∼7 My of evolution. We used these comparative developmental data to investigate the evolution of lineage-specific expression, protein-coding sequences, and expression levels. We found increased lineage specificity and more rapid protein-coding and expression divergence during late spermatogenesis, suggesting that signatures of rapid testis molecular evolution are punctuated across sperm development. Despite strong overall developmental parallels in these components of molecular evolution, protein and expression divergences were only weakly correlated across genes. We detected more rapid protein evolution on the X chromosome relative to the autosomes, whereas X-linked gene expression tended to be relatively more conserved likely reflecting chromosome-specific regulatory constraints. Using allele-specific FACS expression data from crosses between four strains, we found that the relative contributions of different regulatory mechanisms also differed between cell types. Genes showing cis-regulatory changes were more common late in spermatogenesis, and tended to be associated with larger differences in expression levels and greater expression divergence between species. In contrast, genes with trans-acting changes were more common early and tended to be more conserved across species. Our findings advance understanding of gene evolution across spermatogenesis and underscore the fundamental importance of developmental context in molecular evolutionary studies.


Assuntos
Evolução Molecular , Espermatogênese , Animais , Genes Ligados ao Cromossomo X , Masculino , Camundongos , Espermatogênese/genética , Testículo/metabolismo , Cromossomo X
2.
Biol Reprod ; 105(4): 1043-1055, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34007991

RESUMO

Studies of fertilization biology often focus on sperm and egg interactions. However, before gametes interact, mammalian sperm must pass through the cumulus layer; in mice, this consists of several thousand cells tightly glued together with hyaluronic acid and other proteins. To better understand the role of cumulus cells and their extracellular matrix, we perform proteomic experiments on cumulus oophorus complexes (COCs) in house mice (Mus musculus), producing over 24,000 mass spectra to identify 711 proteins. Seven proteins known to stabilize hyaluronic acid and the extracellular matrix were especially abundant (using spectral counts as an indirect proxy for abundance). Through comparative evolutionary analyses, we show that three of these evolve rapidly, a classic signature of genes that influence fertilization rate. Some of the selected sites overlap regions of the protein known to impact function. In a follow-up experiment, we compared COCs from females raised in two different social environments. Female mice raised in the presence of multiple males produced COCs that were smaller and more resistant to dissociation by hyaluronidase compared to females raised in the presence of a single male, consistent with a previous study that demonstrated such females produced COCs that were more resistant to fertilization. Although cumulus cells are often thought of as enhancers of fertilization, our evolutionary, proteomic, and experimental investigations implicate their extracellular matrix as a potential mediator of fertilization outcomes.


Assuntos
Células do Cúmulo/fisiologia , Matriz Extracelular/fisiologia , Fertilização/fisiologia , Camundongos/fisiologia , Proteoma , Animais , Evolução Biológica , Feminino , Fertilização/genética
3.
PLoS Genet ; 14(9): e1007672, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30248095

RESUMO

House mice (Mus musculus) arrived in the Americas only recently in association with European colonization (~400-600 generations), but have spread rapidly and show evidence of local adaptation. Here, we take advantage of this genetic model system to investigate the genomic basis of environmental adaptation in house mice. First, we documented clinal patterns of phenotypic variation in 50 wild-caught mice from a latitudinal transect in Eastern North America. Next, we found that progeny of mice from different latitudes, raised in a common laboratory environment, displayed differences in a number of complex traits related to fitness. Consistent with Bergmann's rule, mice from higher latitudes were larger and fatter than mice from lower latitudes. They also built bigger nests and differed in aspects of blood chemistry related to metabolism. Then, combining exomic, genomic, and transcriptomic data, we identified specific candidate genes underlying adaptive variation. In particular, we defined a short list of genes with cis-eQTL that were identified as candidates in exomic and genomic analyses, all of which have known ties to phenotypes that vary among the studied populations. Thus, wild mice and the newly developed strains represent a valuable resource for future study of the links between genetic variation, phenotypic variation, and climate.


Assuntos
Adaptação Fisiológica/genética , Variação Genética , Camundongos Endogâmicos/genética , Camundongos/fisiologia , Locos de Características Quantitativas/genética , Animais , Clima , Feminino , Masculino , Modelos Genéticos , Fenótipo
4.
Mol Biol Evol ; 34(2): 282-295, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27999113

RESUMO

The disruption of meiotic sex chromosome inactivation (MSCI) has been proposed to be a major developmental mechanism underlying the rapid evolution of hybrid male sterility. We tested this idea by analyzing cell-specific gene expression across spermatogenesis in two lineages of house mice and their sterile and fertile reciprocal hybrids. We found pervasive disruption of sex chromosome gene expression in sterile hybrids at every stage of spermatogenesis. Failure of MSCI was developmentally preceded by increased silencing of autosomal genes, supporting the hypothesis that divergence at the hybrid incompatibility gene, Prdm9, results in increased rates of autosomal asynapsis which in turn triggers widespread silencing of unsynapsed chromatin. We also detected opposite patterns of postmeiotic overexpression or hyper-repression of the sex chromosomes in reciprocal hybrids, supporting the hypothesis that genomic conflict has driven functional divergence that leads to deleterious X-Y dosage imbalances in hybrids. Our developmental timeline also exposed more subtle patterns of mitotic misregulation on the X chromosome, a previously undocumented stage of spermatogenic disruption in this cross. These results indicate that multiple hybrid incompatibilities have converged on a common regulatory phenotype, the disrupted expression of the sex chromosomes during spermatogenesis. Collectively, these data reveal a composite regulatory basis to hybrid male sterility in mice that helps resolve the mechanistic underpinnings of the well-documented large X-effect in mice speciation. We propose that the inherent sensitivity of spermatogenesis to X-linked regulatory disruption has the potential to be a major driver of reproductive isolation in species with chromosomal sex determination.


Assuntos
Especiação Genética , Infertilidade Masculina/genética , Espermatogênese/genética , Animais , Evolução Biológica , Fertilidade , Genes Ligados ao Cromossomo X , Hibridização Genética , Masculino , Meiose , Camundongos , Isolamento Reprodutivo , Cromossomos Sexuais/genética , Cromossomo X , Inativação do Cromossomo X
5.
Mamm Genome ; 28(9-10): 416-425, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28819774

RESUMO

The house mouse is a powerful model to dissect the genetic basis of phenotypic variation, and serves as a model to study human diseases. Despite a wealth of discoveries, most classical laboratory strains have captured only a small fraction of genetic variation known to segregate in their wild progenitors, and existing strains are often related to each other in complex ways. Inbred strains of mice independently derived from natural populations have the potential to increase power in genetic studies with the addition of novel genetic variation. Here, we perform exome-enrichment and high-throughput sequencing (~8× coverage) of 26 wild-derived strains known in the mouse research community as the "Montpellier strains." We identified 1.46 million SNPs in our dataset, approximately 19% of which have not been detected from other inbred strains. This novel genetic variation is expected to contribute to phenotypic variation, as they include 18,496 nonsynonymous variants and 262 early stop codons. Simulations demonstrate that the higher density of genetic variation in the Montpellier strains provides increased power for quantitative genetic studies. Inasmuch as the power to connect genotype to phenotype depends on genetic variation, it is important to incorporate these additional genetic strains into future research programs.


Assuntos
Animais Selvagens/genética , Sequenciamento do Exoma , Variação Genética/genética , Genótipo , Camundongos Endogâmicos/genética , Fenótipo , Animais , Códon de Terminação , Simulação por Computador , Cruzamentos Genéticos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos/classificação , Filogenia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
6.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961317

RESUMO

Hybrid incompatibilities are a critical component of species barriers and may arise due to negative interactions between divergent regulatory elements in parental species. We used a comparative approach to identify common themes in the regulatory phenotypes associated with hybrid male sterility in two divergent rodent crosses, dwarf hamsters and house mice. We investigated three potential characteristic regulatory phenotypes in hybrids including the propensity towards over or underexpression relative to parental species, the influence of developmental stage on the extent of misexpression, and the role of the sex chromosomes on misexpression phenotypes. In contrast to near pervasive overexpression in hybrid house mice, we found that misexpression in hybrid dwarf hamsters was dependent on developmental stage. In both house mouse and dwarf hamster hybrids, however, misexpression increased with the progression of spermatogenesis, although to varying extents and with potentially different consequences. In both systems, we detected sex-chromosome specific overexpression in stages of spermatogenesis where inactivated X chromosome expression was expected, but the hybrid overexpression phenotypes were fundamentally different. Importantly, misexpression phenotypes support the presence of multiple histological blocks to spermatogenesis in dwarf hamster hybrids, including a potential role of meiotic stalling early in spermatogenesis. Collectively, we demonstrate that while there are some similarities in hybrid regulatory phenotypes of house mice and dwarf hamsters, there are also clear differences that point towards unique mechanisms underlying hybrid male sterility in each system. Our results highlight the potential of comparative approaches in helping to understand the importance of disrupted gene regulation in speciation.

7.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34864964

RESUMO

Hybrid sterility is a complex phenotype that can result from the breakdown of spermatogenesis at multiple developmental stages. Here, we disentangle two proposed hybrid male sterility mechanisms in the house mice, Mus musculus domesticus and M. m. musculus, by comparing patterns of gene expression in sterile F1 hybrids from a reciprocal cross. We found that hybrid males from both cross directions showed disrupted X chromosome expression during prophase of meiosis I consistent with a loss of meiotic sex chromosome inactivation (MSCI) and Prdm9-associated sterility, but that the degree of disruption was greater in mice with an M. m. musculus X chromosome consistent with previous studies. During postmeiotic development, gene expression on the X chromosome was only disrupted in one cross direction, suggesting that misexpression at this later stage was genotype-specific and not a simple downstream consequence of MSCI disruption which was observed in both reciprocal crosses. Instead, disrupted postmeiotic expression may depend on the magnitude of earlier disrupted MSCI, or the disruption of particular X-linked genes or gene networks. Alternatively, only hybrids with a potential deficit of Sly copies, a Y-linked ampliconic gene family, showed overexpression in postmeiotic cells, consistent with a previously proposed model of antagonistic coevolution between the X- and Y-linked ampliconic genes contributing to disrupted expression late in spermatogenesis. The relative contributions of these two regulatory mechanisms and their impact on sterility phenotypes await further study. Our results further support the hypothesis that X-linked hybrid sterility in house mice has a variable genetic basis, and that genotype-specific disruption of gene regulation contributes to overexpression of the X chromosome at different stages of development. Overall, these findings underscore the critical role of epigenetic regulation of the X chromosome during spermatogenesis and suggest that these processes are prone to disruption in hybrids.


Assuntos
Epigênese Genética , Infertilidade Masculina , Animais , Histona-Lisina N-Metiltransferase/genética , Hibridização Genética , Infertilidade Masculina/genética , Masculino , Meiose/genética , Camundongos , Espermatogênese/genética , Cromossomo X/genética
8.
PLoS One ; 17(11): e0277680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36395175

RESUMO

The UK Biobank genotyped about 500k participants using Applied Biosystems Axiom microarrays. Participants were subsequently sequenced by the UK Biobank Exome Sequencing Consortium. Axiom genotyping was highly accurate in comparison to sequencing results, for almost 100,000 variants both directly genotyped on the UK Biobank Axiom array and via whole exome sequencing. However, in a study using the exome sequencing results of the first 50k individuals as reference (truth), it was observed that the positive predictive value (PPV) decreased along with the number of heterozygous array calls per variant. We developed a novel addition to the genotyping algorithm, Rare Heterozygous Adjusted (RHA), to significantly improve PPV in variants with minor allele frequency below 0.01%. The improvement in PPV was roughly equal when comparing to the exome sequencing of 50k individuals, or to the more recent ~200k individuals. Sensitivity was higher in the 200k data. The improved calling algorithm, along with enhanced quality control of array probesets, significantly improved the positive predictive value and the sensitivity of array data, making it suitable for the detection of ultra-rare variants.


Assuntos
Exoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Estudos Retrospectivos , Bancos de Espécimes Biológicos , Polimorfismo de Nucleotídeo Único , Algoritmos , Reino Unido
9.
Genetics ; 220(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34897431

RESUMO

Understanding the genetic basis of environmental adaptation in natural populations is a central goal in evolutionary biology. The conditions at high elevation, particularly the low oxygen available in the ambient air, impose a significant and chronic environmental challenge to metabolically active animals with lowland ancestry. To understand the process of adaptation to these novel conditions and to assess the repeatability of evolution over short timescales, we examined the signature of selection from complete exome sequences of house mice (Mus musculus domesticus) sampled across two elevational transects in the Andes of South America. Using phylogenetic analysis, we show that house mice colonized high elevations independently in Ecuador and Bolivia. Overall, we found distinct responses to selection in each transect and largely nonoverlapping sets of candidate genes, consistent with the complex nature of traits that underlie adaptation to low oxygen availability (hypoxia) in other species. Nonetheless, we also identified a small subset of the genome that appears to be under parallel selection at the gene and SNP levels. In particular, three genes (Col22a1, Fgf14, and srGAP1) bore strong signatures of selection in both transects. Finally, we observed several patterns that were common to both transects, including an excess of derived alleles at high elevation, and a number of hypoxia-associated genes exhibiting a threshold effect, with a large allele frequency change only at the highest elevations. This threshold effect suggests that selection pressures may increase disproportionately at high elevations in mammals, consistent with observations of some high-elevation diseases in humans.


Assuntos
Adaptação Fisiológica , Genômica , Aclimatação , Adaptação Fisiológica/genética , Alelos , Animais , Mamíferos/genética , Camundongos , Filogenia
10.
PeerJ ; 7: e6334, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886768

RESUMO

Comparative methods allow researchers to make inferences about evolutionary processes and patterns from phylogenetic trees. In Bayesian phylogenetics, estimating a phylogeny requires specifying priors on parameters characterizing the branching process and rates of substitution among lineages, in addition to others. Accordingly, characterizing the effect of prior selection on phylogenies is an active area of research. The choice of priors may systematically bias phylogenetic reconstruction and, subsequently, affect conclusions drawn from the resulting phylogeny. Here, we focus on the impact of priors in Bayesian phylogenetic inference and evaluate how they affect the estimation of parameters in macroevolutionary models of lineage diversification. Specifically, we simulate trees under combinations of tree priors and molecular clocks, simulate sequence data, estimate trees, and estimate diversification parameters (e.g., speciation and extinction rates) from these trees. When substitution rate heterogeneity is large, diversification rate estimates deviate substantially from those estimated under the simulation conditions when not captured by an appropriate choice of relaxed molecular clock. However, in general, we find that the choice of tree prior and molecular clock has relatively little impact on the estimation of diversification rates insofar as the sequence data are sufficiently informative and substitution rate heterogeneity among lineages is low-to-moderate.

11.
Genetics ; 209(3): 845-859, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29692350

RESUMO

Resolving the mechanistic and genetic bases of reproductive barriers between species is essential to understanding the evolutionary forces that shape speciation. Intrinsic hybrid incompatibilities are often treated as fixed between species, yet there can be considerable variation in the strength of reproductive isolation between populations. The extent and causes of this variation remain poorly understood in most systems. We investigated the genetic basis of variable hybrid male sterility (HMS) between two recently diverged subspecies of house mice, Mus musculus domesticus and Mus musculus musculus We found that polymorphic HMS has a surprisingly complex genetic basis, with contributions from at least five autosomal loci segregating between two closely related wild-derived strains of M. m. musculus One of the HMS-linked regions on chromosome 4 also showed extensive introgression among inbred laboratory strains and transmission ratio distortion (TRD) in hybrid crosses. Using additional crosses and whole genome sequencing of sperm pools, we showed that TRD was limited to hybrid crosses and was not due to differences in sperm motility between M. m. musculus strains. Based on these results, we argue that TRD likely reflects additional incompatibilities that reduce hybrid embryonic viability. In some common inbred strains of mice, selection against deleterious interactions appears to have unexpectedly driven introgression at loci involved in epistatic hybrid incompatibilities. The highly variable genetic basis to F1 hybrid incompatibilities between closely related mouse lineages argues that a thorough dissection of reproductive isolation will require much more extensive sampling of natural variation than has been commonly utilized in mice and other model systems.


Assuntos
Infertilidade Masculina/genética , Camundongos/classificação , Locos de Características Quantitativas , Sequenciamento Completo do Genoma/métodos , Animais , Cromossomos de Mamíferos/genética , Evolução Molecular , Especiação Genética , Hibridização Genética , Endogamia , Masculino , Camundongos/genética , Isolamento Reprodutivo
13.
Genome Biol Evol ; 9(3): 726-739, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338821

RESUMO

Comparative genomic studies are now possible across a broad range of evolutionary timescales, but the generation and analysis of genomic data across many different species still present a number of challenges. The most sophisticated genotyping and down-stream analytical frameworks are still predominantly based on comparisons to high-quality reference genomes. However, established genomic resources are often limited within a given group of species, necessitating comparisons to divergent reference genomes that could restrict or bias comparisons across a phylogenetic sample. Here, we develop a scalable pseudoreference approach to iteratively incorporate sample-specific variation into a genome reference and reduce the effects of systematic mapping bias in downstream analyses. To characterize this framework, we used targeted capture to sequence whole exomes (∼54 Mbp) in 12 lineages (ten species) of mice spanning the Mus radiation. We generated whole exome pseudoreferences for all species and show that this iterative reference-based approach improved basic genomic analyses that depend on mapping accuracy while preserving the associated annotations of the mouse reference genome. We then use these pseudoreferences to resolve evolutionary relationships among these lineages while accounting for phylogenetic discordance across the genome, contributing an important resource for comparative studies in the mouse system. We also describe patterns of genomic introgression among lineages and compare our results to previous studies. Our general approach can be applied to whole or partitioned genomic data and is easily portable to any system with sufficient genomic resources, providing a useful framework for phylogenomic studies in mice and other taxa.


Assuntos
Evolução Molecular , Genoma , Muridae/genética , Animais , Exoma/genética , Genótipo , Camundongos , Filogenia , Especificidade da Espécie
14.
Genetics ; 203(4): 1841-57, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27317678

RESUMO

The mammalian X chromosome has unusual evolutionary dynamics compared to autosomes. Faster-X evolution of spermatogenic protein-coding genes is known to be most pronounced for genes expressed late in spermatogenesis, but it is unclear if these patterns extend to other forms of molecular divergence. We tested for faster-X evolution in mice spanning three different forms of molecular evolution-divergence in protein sequence, gene expression, and DNA methylation-across different developmental stages of spermatogenesis. We used FACS to isolate individual cell populations and then generated cell-specific transcriptome profiles across different stages of spermatogenesis in two subspecies of house mice (Mus musculus), thereby overcoming a fundamental limitation of previous studies on whole tissues. We found faster-X protein evolution at all stages of spermatogenesis and faster-late protein evolution for both X-linked and autosomal genes. In contrast, there was less expression divergence late in spermatogenesis (slower late) on the X chromosome and for autosomal genes expressed primarily in testis (testis-biased). We argue that slower-late expression divergence reflects strong regulatory constraints imposed during this critical stage of sperm development and that these constraints are particularly acute on the tightly regulated sex chromosomes. We also found slower-X DNA methylation divergence based on genome-wide bisulfite sequencing of sperm from two species of mice (M. musculus and M. spretus), although it is unclear whether slower-X DNA methylation reflects development constraints in sperm or other X-linked phenomena. Our study clarifies key differences in patterns of regulatory and protein evolution across spermatogenesis that are likely to have important consequences for mammalian sex chromosome evolution, male fertility, and speciation.


Assuntos
Metilação de DNA/genética , Evolução Molecular , Espermatogênese/genética , Cromossomo X/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Genes Ligados ao Cromossomo X , Especiação Genética , Genoma , Masculino , Camundongos , Especificidade da Espécie , Espermatozoides/crescimento & desenvolvimento , Espermatozoides/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Transcriptoma/genética
15.
Evolution ; 69(8): 1961-72, 2015 08.
Artigo em Inglês | MEDLINE | ID: mdl-26118639

RESUMO

The idea that species boundaries can be semipermeable to gene flow is now widely accepted but the evolutionary importance of introgressive hybridization remains unclear. Here we examine the genomic contribution of gene flow between two hybridizing chipmunk species, Tamias ruficaudus and T. amoenus. Previous studies have shown that ancient hybridization has resulted in complete fixation of introgressed T. ruficaudus mitochondrial DNA (mtDNA) in some populations of T. amoenus, but the extent of nuclear introgression is not known. We used targeted capture to sequence over 10,500 gene regions from multiple individuals of both species. We found that most of the nuclear genome is sorted between these species and that overall genealogical patterns do not show evidence for introgression. Our analysis rules out all but very minor levels of interspecific gene flow, indicating that introgressive hybridization has had little impact on the overall genetic composition of these species outside of the mitochondrial genome. Given that much of the evidence for introgression in animals has come from mtDNA, our results underscore that unraveling the importance introgressive hybridization during animal speciation will require a genome-wide perspective that is still absent for many species.


Assuntos
Fluxo Gênico , Hibridização Genética , Mitocôndrias/genética , Sciuridae/genética , Transcriptoma , Animais , Núcleo Celular/genética , Éxons , Genética Populacional , Genoma Mitocondrial , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA