Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(14): 148201, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37862643

RESUMO

A buckled sheet offers a reservoir of material that can be unfurled at a later time. For sufficiently thin yet stiff materials, this geometric process has a striking mechanical feature: when the slack runs out, the material locks to further extension. Here, we establish a simple route to a tunable locking material: a system with an interval where it is freely deformable under a given deformation mode, and where the endpoints of this interval can be changed continuously over a wide range. We demonstrate this type of mechanical response in a thin sheet formed into a cylindrical shell and subjected to axial twist and compression, and we rationalize our results with a simple geometric model.

2.
Langmuir ; 39(34): 12032-12040, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37590891

RESUMO

The formation of particle clusters can substantially modify the dynamics and mechanical properties of suspensions in both two and three dimensions. While it has been well established that large network-spanning clusters increase the rigidity of particle systems, it is still unclear how the presence of localized nonpercolating clusters affects the dynamics and mechanical properties of particle suspensions. Here, we introduce self-assembled localized particle clusters at a fluid-fluid interface by mixing a fraction of Janus particles in a monolayer of homogeneous colloids. Each Janus particle binds to a few nearby homogeneous colloids, resulting in numerous small clusters uniformly distributed across the interface. Using a custom magnetic rod interfacial stress rheometer, we apply linear oscillatory shear to the particle-laden fluid interface. By analyzing the local affine deformation of particles from optical microscopy, we show that particles in localized clusters experience substantially lower shear-induced stretching than their neighbors outside clusters. We hypothesize that such heterogeneous dynamics induced by particle clusters increase the effective surface coverage of particles, which in turn enhances the shear moduli of the interface, as confirmed by direct interfacial rheological measurements. Our study illustrates the microscopic dynamics of small clusters in a shear flow and reveals their profound effects on the macroscopic rheology of particle-laden fluid interfaces. Our findings open an avenue for designing interfacial materials with improved mechanical properties via the control of formation of localized particle clusters.

3.
Proc Natl Acad Sci U S A ; 117(22): 11887-11893, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32430317

RESUMO

When stressed sufficiently, solid materials yield and deform plastically via reorganization of microscopic constituents. Indeed, it is possible to alter the microstructure of materials by judicious application of stress, an empirical process utilized in practice to enhance the mechanical properties of metals. Understanding the interdependence of plastic flow and microscopic structure in these nonequilibrium states, however, remains a major challenge. Here, we experimentally investigate this relationship, between the relaxation dynamics and microscopic structure of disordered colloidal solids during plastic deformation. We apply oscillatory shear to solid colloidal monolayers and study their particle trajectories as a function of shear rate in the plastic regime. Under these circumstances, the strain rate, the relaxation rate associated with plastic flow, and the sample microscopic structure oscillate together, but with different phases. Interestingly, the experiments reveal that the relaxation rate associated with plastic flow at time t is correlated with the strain rate and sample microscopic structure measured at earlier and later times, respectively. The relaxation rate, in this nonstationary condition, exhibits power-law, shear-thinning behavior and scales exponentially with sample excess entropy. Thus, measurement of sample static structure (excess entropy) provides insight about both strain rate and constituent rearrangement dynamics in the sample at earlier times.

4.
Soft Matter ; 11(8): 1539-46, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25589251

RESUMO

A material's response to small but finite deformations can reveal the roots of its response to much larger deformations. Here, we identify commonalities in the responses of 2D soft jammed solids with different amounts of disorder. We cyclically shear the materials while tracking their constituent particles, in experiments that feature a stable population of repeated structural relaxations. Using bidisperse particle sizes creates a more amorphous material, while monodisperse sizes yield a more polycrystalline one. We find that the materials' responses are very similar, both at the macroscopic, mechanical level and in the microscopic motions of individual particles. However, both locally and in bulk, crystalline arrangements of particles are stiffer (greater elastic modulus) and less likely to rearrange. Our work supports the idea of a common description for the responses of a wide array of materials.


Assuntos
Nanopartículas/química , Módulo de Elasticidade , Elasticidade , Movimento (Física) , Tamanho da Partícula
5.
Phys Rev Lett ; 112(2): 028302, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24484046

RESUMO

At the microscopic level, plastic flow of a jammed, disordered material consists of a series of particle rearrangements that cannot be reversed by subsequent deformation. An infinitesimal deformation of the same material has no rearrangements. Yet between these limits, there may be a self-organized plastic regime with rearrangements, but with no net change upon reversing a deformation. We measure the oscillatory response of a jammed interfacial material, and directly observe rearrangements that couple to bulk stress and dissipate energy, but do not always give rise to global irreversibility.

6.
Phys Rev Lett ; 113(6): 068301, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25148354

RESUMO

A system with multiple transient memories can remember a set of inputs but subsequently forgets almost all of them, even as they are continually applied. If noise is added, the system can store all memories indefinitely. The phenomenon has recently been predicted for cyclically sheared non-Brownian suspensions. Here we present experiments on such suspensions, finding behavior consistent with multiple transient memories and showing how memories can be stabilized by noise.

7.
Sci Adv ; 8(40): eabo1614, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36197976

RESUMO

Shearing a disordered or amorphous solid for many cycles with a constant strain amplitude can anneal it, relaxing a sample to a steady state that encodes a memory of that amplitude. This steady state also features a remarkable stability to amplitude variations that allows one to read the memory. Here, we shed light on both annealing and memory by considering how to mechanically anneal a sample to have as little memory content as possible. In experiments, we show that a "ring-down" protocol reaches a comparable steady state but with no discernible memories and minimal structural anisotropy. We introduce a method to characterize the population of rearrangements within a sample and show how it connects with the response to amplitude variation and the size of annealing steps. These techniques can be generalized to other forms of glassy matter and a wide array of disordered solids, especially those that yield by flowing homogeneously.

8.
J Colloid Interface Sci ; 618: 241-247, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339960

RESUMO

HYPOTHESIS: Particle-laden fluid interfaces are the central component of many natural and engineering systems. Understanding the mechanical properties and improving the stability of such interfaces are of great practical importance. Janus particles, a special class of heterogeneous colloids, might be used as an effective surface-active agent to control the assembly and interfacial rheology of particle-laden fluid interfaces. EXPERIMENTS: Using a custom-built interfacial stress rheometer, we explore the effect of Janus particle additives on the interfacial rheology and microscopic structure of particle-laden fluid interfaces. FINDINGS: We find that the addition of a small amount of platinum-polystyrene (Pt-PS) Janus particles within a monolayer of PS colloids (1:40 number ratio) can lead to more than an order-of-magnitude increase in surface moduli with enhanced elasticity, which improves the stability of the interface. This drastic change in interfacial rheology is associated with the formation of local particle clusters surrounding each Janus particle. We further explain the origin of local particle clusters by considering the interparticle interactions at the interface. Our experiments reveal the effect of local particle structures on the macroscopic rheological behaviors of particle monolayers and demonstrate a new way to tune the microstructure and mechanical properties of particle-laden fluid interfaces.

9.
Phys Rev Lett ; 107(1): 010603, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21797531

RESUMO

Out-of-equilibrium disordered systems may form memories of external driving in a remarkable fashion. The system "remembers" multiple values from a series of training inputs yet "forgets" nearly all of them at long times despite the inputs being continually repeated. Here, learning and forgetting are inseparable aspects of a single process. The memory loss may be prevented by the addition of noise. We identify a class of systems with this behavior, giving as an example a model of non-Brownian suspensions under cyclic shear.

10.
Sci Adv ; 7(33)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34380623

RESUMO

When an amorphous solid is deformed cyclically, it may reach a steady state in which the paths of constituent particles trace out closed loops that repeat in each driving cycle. A remarkable variant has been noticed in simulations where the period of particle motions is a multiple of the period of driving, but the reasons for this behavior have remained unclear. Motivated by mesoscopic features of displacement fields in experiments on jammed solids, we propose and analyze a simple model of interacting soft spots-locations where particles rearrange under stress and that resemble two-level systems with hysteresis. We show that multiperiodic behavior can arise among just three or more soft spots that interact with each other, but in all cases it requires frustrated interactions, illuminating this otherwise elusive type of interaction. We suggest directions for seeking this signature of frustration in experiments and for achieving it in designed systems.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 2): 056307, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19518562

RESUMO

We study theoretically the chirality of a generic rigid object's sedimentation in a fluid under gravity in the low Reynolds number regime. We represent the object as a collection of small Stokes spheres or stokeslets and the gravitational force as a constant point force applied at an arbitrary point of the object. For a generic configuration of stokeslets and forcing point, the motion takes a simple form in the nearly free draining limit where the stokeslet radius is arbitrarily small. In this case, the internal hydrodynamic interactions between stokeslets are weak, and the object follows a helical path while rotating at a constant angular velocity omega about a fixed axis. This omega is independent of initial orientation and thus constitutes a chiral response for the object. Even though there can be no such chiral response in the absence of hydrodynamic interactions between the stokeslets, the angular velocity obtains a fixed nonzero limit as the stokeslet radius approaches zero. We characterize empirically how omega depends on the placement of the stokeslets, concentrating on three-stokeslet objects with the external force applied far from the stokeslets. Objects with the largest omega are aligned along the forcing direction. In this case, the limiting omega varies as the inverse square of the minimum distance between stokeslets. We illustrate the prevalence of this robust chiral motion with experiments on small macroscopic objects of arbitrary shape.

12.
Proc Math Phys Eng Sci ; 475(2226): 20180874, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31293356

RESUMO

Many materials that are out of equilibrium can 'learn' one or more inputs that are repeatedly applied. Yet, a common framework for understanding such memories is lacking. Here, we construct minimal representations of cyclic memory behaviours as directed graphs, and we construct simple physically motivated models that produce the same graph structures. We show how a model of worn grass between park benches can produce multiple transient memories-a behaviour previously observed in dilute suspensions of particles and charge-density-wave conductors-and the Mullins effect. Isolating these behaviours in our simple model allows us to assess the necessary ingredients for these kinds of memory, and to quantify memory capacity. We contrast these behaviours with a simple Preisach model that produces return-point memory. Our analysis provides a unified method for comparing and diagnosing cyclic memory behaviours across different materials.

13.
Artigo em Inglês | MEDLINE | ID: mdl-24125267

RESUMO

Multiple transient memories, originally discovered in charge-density-wave conductors, are a remarkable and initially counterintuitive example of how a system can store information about its driving. In this class of memories, a system can learn multiple driving inputs, nearly all of which are eventually forgotten despite their continual input. If sufficient noise is present, the system regains plasticity so that it can continue to learn new memories indefinitely. Recently, Keim and Nagel [Phys. Rev. Lett. 107, 010603 (2011)] showed how multiple transient memories could be generalized to a generic driven disordered system with noise, giving as an example simulations of a simple model of a sheared non-Brownian suspension. Here, we further explore simulation models of suspensions under cyclic shear, focusing on three main themes: robustness, structure, and overdriving. We show that multiple transient memories are a robust feature independent of many details of the model. The steady-state spatial distribution of the particles is sensitive to the driving algorithm; nonetheless, the memory formation is independent of such a change in particle correlations. Finally, we demonstrate that overdriving provides another means for controlling memory formation and retention.

14.
Artigo em Inglês | MEDLINE | ID: mdl-24483441

RESUMO

Many fascinating phenomena such as large-scale collective flows, enhanced fluid mixing, and pattern formation have been observed in so-called active fluids, which are composed of particles that can absorb energy and dissipate it into the fluid medium. For active particles immersed in liquids, fluid-mediated viscous stresses can play an important role on the emergence of collective behavior. Here, we experimentally investigate their role in the dynamics of self-assembling magnetically driven colloidal particles which can rapidly form organized hexagonal structures. We find that viscous stresses reduce hexagonal ordering, generate smaller clusters, and significantly decrease the rate of cluster formation, all while holding the system at constant number density. Furthermore, we show that time and length scales of cluster formation depend on the Mason number (Mn), or ratio of viscous to magnetic forces, scaling as t∝Mn and L∝Mn(-1/2). Our results suggest that viscous stresses hinder collective behavior in a self-assembling colloidal system.

15.
Lab Chip ; 13(10): 1850-3, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23525332

RESUMO

We present a novel method of testing creep recovery in a microfluidic device. This method allows for the measurement of relaxation time of fluids at low strain. After applying a steady pressure-driven flow along a microchannel, the pressure is released and the fluid is allowed to relax and come to rest. Local strains are observed via the time-dependent velocity profiles and are fit to a general viscoelastic model to obtain the fluids' relaxation times. The use of polymeric solutions of various molecular weights allows for the observation of time scales for strains ranging from 0.01 to 10. Results are consistent with data obtained in a macroscopic rheometer and with a viscoelastic constitutive model.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(5 Pt 2): 056325, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21728665

RESUMO

The pinch-off of an air bubble from an underwater nozzle ends in a singularity with a remarkable sensitivity to a variety of perturbations. I report on experiments that break both the axial (i.e., vertical) and azimuthal symmetry of the singularity formation. The density of the inner gas influences the axial asymmetry of the neck near pinch-off. For denser gases, flow through the neck late in collapse changes the pinch-off dynamics. Gas density is also implicated in the formation of satellite bubbles. The azimuthal shape oscillations described by Schmidt et al. can be initiated by anisotropic boundary conditions in the liquid as well as with an asymmetric nozzle shape. I measure the n=3 oscillatory mode and observe the nonlinear, highly three-dimensional outcomes of pinch-off with large azimuthal perturbations. These are consistent with prior theory.

17.
Phys Rev Lett ; 97(14): 144503, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-17155257

RESUMO

Using high-speed video, we have studied air bubbles detaching from an underwater nozzle. As a bubble distorts, it forms a thin neck which develops a singular shape as it pinches off. As in other singularities, the minimum neck radius scales with the time until the breakup. However, because the air-water interfacial tension does not drive the breakup, even small initial cylindrical asymmetries are preserved throughout the collapse. This novel, nonuniversal singularity retains a memory of the nozzle shape, size, and tilt angle. In the last stages, the air appears to tear instead of pinch.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA