Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Phys Rev Lett ; 132(11): 116502, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563951

RESUMO

Using Raman spectroscopy to study the correlated 4d-electron metal Sr_{2}RhO_{4}, we observe pronounced excitations at 220 meV and 240 meV with A_{1g} and B_{1g} symmetries, respectively. We identify them as transitions between the spin-orbit multiplets of the Rh ions, in close analogy to the spin-orbit excitons in the Mott insulators Sr_{2}IrO_{4} and α-RuCl_{3}. This observation provides direct evidence for the unquenched spin-orbit coupling in Sr_{2}RhO_{4}. A quantitative analysis of the data reveals that the tetragonal crystal field Δ in Sr_{2}RhO_{4} has a sign opposite to that in insulating Sr_{2}IrO_{4}, which enhances the planar xy orbital character of the effective J=1/2 wave function. This supports a metallic ground state, and suggests that c-axis compression of Sr_{2}RhO_{4} may transform it into a quasi-two-dimensional antiferromagnetic insulator.

2.
Proc Natl Acad Sci U S A ; 118(30)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301905

RESUMO

We have used atomic layer-by-layer oxide molecular beam epitaxy to grow epitaxial thin films of [Formula: see text] with x up to 0.5, greatly exceeding the solubility limit of Ca in bulk systems ([Formula: see text]). A comparison of the optical conductivity measured by spectroscopic ellipsometry to prior predictions from dynamical mean-field theory demonstrates that the hole concentration p is approximately equal to x. We find superconductivity with [Formula: see text] of 15 to 20 K up to the highest doping levels and attribute the unusual stability of superconductivity in [Formula: see text] to the nearly identical radii of La and Ca ions, which minimizes the impact of structural disorder. We conclude that careful disorder management can greatly extend the "superconducting dome" in the phase diagram of the cuprates.

3.
Proc Natl Acad Sci U S A ; 118(7)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33563764

RESUMO

A central question in the underdoped cuprates pertains to the nature of the pseudogap ground state. A conventional metallic ground state of the pseudogap region has been argued to host quantum oscillations upon destruction of the superconducting order parameter by modest magnetic fields. Here, we use low applied measurement currents and millikelvin temperatures on ultrapure single crystals of underdoped [Formula: see text] to unearth an unconventional quantum vortex matter ground state characterized by vanishing electrical resistivity, magnetic hysteresis, and nonohmic electrical transport characteristics beyond the highest laboratory-accessible static fields. A model of the pseudogap ground state is now required to explain quantum oscillations that are hosted by the bulk quantum vortex matter state without experiencing sizable additional damping in the presence of a large maximum superconducting gap; possibilities include a pair density wave.

4.
Nano Lett ; 23(8): 3291-3297, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37027232

RESUMO

The interface polarity plays a vital role in the physical properties of oxide heterointerfaces because it can cause specific modifications of the electronic and atomic structure. Reconstruction due to the strong polarity of the NdNiO2/SrTiO3 interface in recently discovered superconducting nickelate films may play an important role, as no superconductivity has been observed in the bulk. By employing four-dimensional scanning transmission electron microscopy and electron energy-loss spectroscopy, we studied effects of oxygen distribution, polyhedral distortion, elemental intermixing, and dimensionality in NdNiO2/SrTiO3 superlattices grown on SrTiO3 (001) substrates. Oxygen distribution maps show a gradual variation of the oxygen content in the nickelate layer. Remarkably, we demonstrate thickness-dependent interface reconstruction due to a polar discontinuity. An average cation displacement of ∼0.025 nm at interfaces in 8NdNiO2/4SrTiO3 superlattices is twice larger than that in 4NdNiO2/2SrTiO3 superlattices. Our results provide insights into the understanding of reconstructions at NdNiO2/SrTiO3 polar interfaces.

5.
Nat Mater ; 21(6): 627-633, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35228661

RESUMO

(Ba,K)BiO3 constitute an interesting class of superconductors, where the remarkably high superconducting transition temperature Tc of 30 K arises in proximity to charge density wave order. However, the precise mechanism behind these phases remains unclear. Here, enabled by high-pressure synthesis, we report superconductivity in (Ba,K)SbO3 with a positive oxygen-metal charge transfer energy in contrast to (Ba,K)BiO3. The parent compound BaSbO3-δ shows a larger charge density wave gap compared to BaBiO3. As the charge density wave order is suppressed via potassium substitution up to 65%, superconductivity emerges, rising up to Tc = 15 K. This value is lower than the maximum Tc of (Ba,K)BiO3, but higher by more than a factor of two at comparable potassium concentrations. The discovery of an enhanced charge density wave gap and superconductivity in (Ba,K)SbO3 indicates that strong oxygen-metal covalency may be more essential than the sign of the charge transfer energy in the main-group perovskite superconductors.

6.
J Synchrotron Radiat ; 28(Pt 4): 1184-1192, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212883

RESUMO

The IRIXS Spectrograph represents a new design of an ultra-high-resolution resonant inelastic X-ray scattering (RIXS) spectrometer that operates at the Ru L3-edge (2840 eV). First proposed in the field of hard X-rays by Shvyd'ko [(2015), Phys. Rev. A, 91, 053817], the X-ray spectrograph uses a combination of laterally graded multilayer mirrors and collimating/dispersing Ge(111) crystals optics in a novel spectral imaging approach to overcome the energy resolution limitation of a traditional Rowland-type spectrometer [Gretarsson et al. (2020), J. Synchrotron Rad. 27, 538-544]. In combination with a dispersionless nested four-bounce high-resolution monochromator design that utilizes Si(111) and Al2O3(110) crystals, an overall energy resolution better than 35 meV full width at half-maximum has been achieved at the Ru L3-edge, in excellent agreement with ray-tracing simulations.

7.
Phys Rev Lett ; 127(9): 097203, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506205

RESUMO

Since the discovery of charge disproportionation in the FeO_{2} square-lattice compound Sr_{3}Fe_{2}O_{7} by Mössbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained "hidden" to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe K-edge resonant x-ray scattering to demonstrate checkerboard charge order in the FeO_{2} planes that vanishes at a sharp second-order phase transition upon heating above 332 K. Stacking disorder of the checkerboard pattern due to frustrated interlayer interactions broadens the corresponding superstructure reflections and greatly reduces their amplitude, thus explaining the difficulty of detecting them by conventional probes. We discuss the implications of these findings for research on "hidden order" in other materials.

8.
J Synchrotron Radiat ; 27(Pt 2): 538-544, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153295

RESUMO

A new resonant inelastic X-ray scattering (RIXS) instrument has been constructed at beamline P01 of the PETRA III synchrotron. This instrument has been named IRIXS (intermediate X-ray energy RIXS) and is dedicated to X-rays in the tender-energy regime (2.5-3.5 keV). The range covers the L2,3 absorption edges of many of the 4d elements (Mo, Tc, Ru, Rh, Pd and Ag), offering a unique opportunity to study their low-energy magnetic and charge excitations. The IRIXS instrument is currently operating at the Ru L3-edge (2840 eV) but can be extended to the other 4d elements using the existing concept. The incoming photons are monochromated with a four-bounce Si(111) monochromator, while the energy analysis of the outgoing photons is performed by a diced spherical crystal analyzer featuring (102) lattice planes of quartz (SiO2). A total resolution of 100 meV (full width at half-maximum) has been achieved at the Ru L3-edge, a number that is in excellent agreement with ray-tracing simulations.

9.
Proc Natl Acad Sci U S A ; 113(45): 12667-12672, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791146

RESUMO

Strong evidence for charge-density correlation in the underdoped phase of the cuprate YBa2Cu3O y was obtained by NMR and resonant X-ray scattering. The fluctuations were found to be enhanced in strong magnetic fields. Recently, 3D charge-density-wave (CDW) formation with long-range order (LRO) was observed by X-ray diffraction in [Formula: see text] 15 T. To elucidate how the CDW transition impacts the pair condensate, we have used torque magnetization to 45 T and thermal conductivity [Formula: see text] to construct the magnetic phase diagram in untwinned crystals with hole density p = 0.11. We show that the 3D CDW transitions appear as sharp features in the susceptibility and [Formula: see text] at the fields [Formula: see text] and [Formula: see text], which define phase boundaries in agreement with spectroscopic techniques. From measurements of the melting field [Formula: see text] of the vortex solid, we obtain evidence for two vortex solid states below 8 K. At 0.5 K, the pair condensate appears to adjust to the 3D CDW by a sharp transition at 24 T between two vortex solids with very different shear moduli. At even higher H (41 T), the second vortex solid melts to a vortex liquid which survives to fields well above 41 T. de Haas-van Alphen oscillations appear at fields 24-28 T, below the lower bound for the upper critical field [Formula: see text].

10.
Nat Mater ; 21(10): 1102-1103, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36151461
12.
Phys Rev Lett ; 119(6): 067201, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949630

RESUMO

We present and analyze Raman spectra of the Mott insulator Ca_{2}RuO_{4}, whose quasi-two-dimensional antiferromagnetic order has been described as a condensate of low-lying spin-orbit excitons with angular momentum J_{eff}=1. In the A_{g} polarization geometry, the amplitude (Higgs) mode of the spin-orbit condensate is directly probed in the scalar channel, thus avoiding infrared-singular magnon contributions. In the B_{1g} geometry, we observe a single-magnon peak as well as two-magnon and two-Higgs excitations. Model calculations using exact diagonalization quantitatively agree with the observations. Together with recent neutron scattering data, our study provides strong evidence for excitonic magnetism in Ca_{2}RuO_{4} and points out new perspectives for research on the Higgs mode in two dimensions.

13.
Nat Commun ; 15(1): 378, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191551

RESUMO

The polarity of a surface can affect the electronic and structural properties of oxide thin films through electrostatic effects. Understanding the mechanism behind these effects requires knowledge of the atomic structure and electrostatic characteristics at the surface. In this study, we use annular bright-field imaging to investigate the surface structure of a Pr0.8Sr0.2NiO2+x (0 < x < 1) film. We observe a polar distortion coupled with octahedral rotations in a fully oxidized Pr0.8Sr0.2NiO3 sample, and a stronger polar distortion in a partially reduced sample. Its spatial depth extent is about three unit cells from the surface. Additionally, we use four-dimensional scanning transmission electron microscopy (4D-STEM) to directly image the local atomic electric field surrounding Ni atoms near the surface and discover distinct valence variations of Ni atoms, which are confirmed by atomic-resolution electron energy-loss spectroscopy (EELS). Our results suggest that the strong surface reconstruction in the reduced sample is closely related to the formation of oxygen vacancies from topochemical reduction. These findings provide insights into the understanding and evolution of surface polarity at the atomic level.

14.
Sci Adv ; 10(11): eadi7598, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489363

RESUMO

Ultrafast optical control of quantum systems is an emerging field of physics. In particular, the possibility of light-driven superconductivity has attracted much of attention. To identify nonequilibrium superconductivity, it is necessary to measure fingerprints of superconductivity on ultrafast timescales. Recently, nonlinear THz third-harmonic generation (THG) was shown to directly probe the collective degrees of freedoms of the superconducting condensate, including the Higgs mode. Here, we extend this idea to light-driven nonequilibrium states in superconducting La2-xSrxCuO4, establishing an optical pump-THz-THG drive protocol to access the transient superconducting order-parameter quench and recovering on few-picosecond timescales. We show in particular the ability of two-dimensional TH spectroscopy to disentangle the effects of optically excited quasiparticles from the pure order-parameter dynamics, which are unavoidably mixed in the pump-driven linear THz response. Benchmarking the gap dynamics to existing experiments shows the ability of driven THG spectroscopy to overcome these limitations in ordinary pump-probe protocols.

15.
Adv Mater ; 35(41): e2305622, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37565798

RESUMO

Terahertz (THz) radiation is a powerful tool with widespread applications ranging from imaging, sensing, and broadband communications to spectroscopy and nonlinear control of materials. Future progress in THz technology depends on the development of efficient, structurally simple THz emitters that can be implemented in advanced miniaturized devices. Here, it is shown how the natural electronic anisotropy of layered conducting transition metal oxides enables the generation of intense terahertz radiation via the transverse thermoelectric effect. In thin films grown on off-cut substrates, femtosecond laser pulses generate ultrafast out-of-plane temperature gradients, which in turn launch in-plane thermoelectric currents, thus allowing efficient emission of the resulting THz field out of the film structure. This scheme is demonstrated in experiments on thin films of the layered metals PdCoO2 and La1.84 Sr0.16 CuO4 , and model calculations that elucidate the influence of the material parameters on the intensity and spectral characteristics of the emitted THz field are presented. Due to its simplicity, the method opens up a promising avenue for the development of highly versatile THz sources and integrable emitter elements.

16.
Nat Commun ; 14(1): 1343, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906577

RESUMO

Cuprate high-Tc superconductors are known for their intertwined interactions and the coexistence of competing orders. Uncovering experimental signatures of these interactions is often the first step in understanding their complex relations. A typical spectroscopic signature of the interaction between a discrete mode and a continuum of excitations is the Fano resonance/interference, characterized by the asymmetric light-scattering amplitude of the discrete mode as a function of the electromagnetic driving frequency. In this study, we report a new type of Fano resonance manifested by the nonlinear terahertz response of cuprate high-Tc superconductors, where we resolve both the amplitude and phase signatures of the Fano resonance. Our extensive hole-doping and magnetic field dependent investigation suggests that the Fano resonance may arise from an interplay between the superconducting fluctuations and the charge density wave fluctuations, prompting future studies to look more closely into their dynamical interactions.

17.
Nat Mater ; 10(3): 189-93, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21297622

RESUMO

The occupation of d orbitals controls the magnitude and anisotropy of the inter-atomic electron transfer in transition-metal oxides and hence exerts a key influence on their chemical bonding and physical properties. Atomic-scale modulations of the orbital occupation at surfaces and interfaces are believed to be responsible for massive variations of the magnetic and transport properties, but could not thus far be probed in a quantitative manner. Here we show that it is possible to derive quantitative, spatially resolved orbital polarization profiles from soft-X-ray reflectivity data, without resorting to model calculations. We demonstrate that the method is sensitive enough to resolve differences of ~3% in the occupation of Ni e(g) orbitals in adjacent atomic layers of a LaNiO(3)-LaAlO(3) superlattice, in good agreement with ab initio electronic-structure calculations. The possibility to quantitatively correlate theory and experiment on the atomic scale opens up many new perspectives for orbital physics in transition-metal oxides.

18.
Nat Commun ; 13(1): 6674, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335112

RESUMO

Magnonic devices operating at terahertz frequencies offer intriguing prospects for high-speed electronics with minimal energy dissipation However, guiding and manipulating terahertz magnons via external parameters present formidable challenges. Here we report the results of magnetic Raman scattering experiments on the antiferromagnetic spin-orbit Mott insulator Sr2IrO4 under uniaxial stress. We find that the energies of zone-center magnons are extremely stress sensitive: lattice strain of 0.1% increases the magnon energy by 40%. The magnon response is symmetric with respect to the sign of the applied stress (tensile or compressive), but depends strongly on its direction in the IrO2 planes. A theory based on coupling of the spin-orbit-entangled iridium magnetic moments to lattice distortions provides a quantitative explanation of the Raman data and a comprehensive framework for the description of magnon-lattice interactions in magnets with strong spin-orbit coupling. The possibility to efficiently manipulate the propagation of terahertz magnons via external stress opens up multifold design options for reconfigurable magnonic devices.

19.
Adv Mater ; 34(35): e2202971, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35817958

RESUMO

Devices with tunable magnetic noncollinearity are important components of superconducting electronics and spintronics, but they typically require epitaxial integration of several complex materials. The spin-polarized neutron reflectometry measurements on La1-x Srx MnO3 homojunction arrays with modulated Sr concentration reported herein have led to the discovery of magnetic fan structures with highly noncollinear alignment of Mn spins and an emergent periodicity twice as large as the array's unit cell. The neutron data show that these magnetic superstructures can be fully long-range ordered, despite the gradual modulation of the doping level created by charge transfer and chemical intermixing. The degree of noncollinearity can be effectively adjusted by low magnetic fields. Notwithstanding their chemical and structural simplicity, oxide homojunctions thus show considerable promise as a platform for tunable complex magnetism and as a powerful design element of spintronic devices.

20.
Nat Commun ; 13(1): 3163, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672416

RESUMO

Cuprate superconductors have the highest critical temperatures (Tc) at ambient pressure, yet a consensus on the superconducting mechanism remains to be established. Finding an empirical parameter that limits the highest reachable Tc can provide crucial insight into this outstanding problem. Here, in the first two Ruddlesden-Popper members of the model Hg-family of cuprates, which are chemically nearly identical and have the highest Tc among all cuprate families, we use inelastic photon scattering to reveal that the energy of magnetic fluctuations may play such a role. In particular, we observe the single-paramagnon spectra to be nearly identical between the two compounds, apart from an energy scale difference of ~30% which matches their difference in Tc. The empirical correlation between paramagnon energy and maximal Tc is further found to extend to other cuprate families with relatively high Tc's, hinting at a fundamental connection between them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA