RESUMO
Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system. Diffusion tensor magnetic resonance imaging (DTI) can yield important information on the in vivo pathological processes affecting water diffusion. The aim of this study was to quantitatively define water diffusion in normal-appearing white matter (NAWM) distant from the plaque, in the plaque, and around the plaque, and to investigate the correlation of these changes with clinical disability. Conventional MRI and DTI scans were conducted in 30 patients with MS and 15 healthy individuals. Fractional anisotropy maps and visible diffusion coefficients were created and integrated with T2-weighted images. Regions of interest (ROIs) were placed on the plaques on the same side, white matter around the plaques and NAWM on the opposite side. Only the white matter of healthy individuals in the control group, and FA and ADC values were obtained for comparison. The highest FA and lowest ADC were detected in the control group at the periventricular region, cerebellar peduncle and at all ROIs irrespective of location. There was a significant difference in comparison to the control group at all ROIs in patients with MS (p < 0.001 for all comparisons). No significant correlation between diffusion parameters and expanded disability state scale (EDSS) scores was found in patients with MS. DTI may provide more accurate information on the damage due to the illness, compared to T2A sequences, but this damage may not be correlated with the clinical disability measured by EDSS score.
Assuntos
Sistema Nervoso Central/patologia , Imagem de Difusão por Ressonância Magnética , Esclerose Múltipla/complicações , Esclerose Múltipla/patologia , Fibras Nervosas Mielinizadas/patologia , Anisotropia , Estudos de Casos e Controles , Avaliação da Deficiência , Pessoas com Deficiência , Feminino , Humanos , Imageamento por Ressonância Magnética , MasculinoRESUMO
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system, predominantly affecting the white matter, but also the grey matter. Aim of this study was to detect MS lesions with double inversion recovery (DIR), fluid-attenuated inversion recovery (FLAIR) and T2-weighted magnetic resonance (MR) techniques and determine the sensitivity of these techniques, and the correlation between the number of lesions and expanded disability state scale (EDSS) scores. Thirty-four patients with MS (20 females and 14 males) were included in this study. DIR and conventional MR (T2-A, FLAIR) sequences were obtained. Lesions were counted and classified as belonging to one of seven anatomical regions: cortical, juxtacortical, deep grey matter, deep white matter, mixed white matter-grey matter, periventricular white matter and infratentorial. The correlation between lesion number and EDSS scores was investigated. DIR images showed more intracortical and mixed white matter-grey matter lesions in comparison with both FLAIR and T2 sequences (p=0, p=0 respectively). There was a significant difference between mean lesion numbers at the juxtacortical region, obtained with DIR and T2-weighted images (p = 0.002). The total number of lesions obtained with all methods was similar. DIR brain imaging had the highest sensitivity in the detection of cortical and mixed white matter - grey matter lesions, compared with FLAIR and T2 sequences. In addition, the lesions obtained with DIR images were more easily visualized.