Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 123(Pt 8): 1343-51, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20332111

RESUMO

Stimulation of Na(+)/K(+)-ATPase translocation to the cell surface increases active Na(+) transport, which is the driving force of alveolar fluid reabsorption, a process necessary to keep the lungs free of edema and to allow normal gas exchange. Here, we provide evidence that insulin increases alveolar fluid reabsorption and Na(+)/K(+)-ATPase activity by increasing its translocation to the plasma membrane in alveolar epithelial cells. Insulin-induced Akt activation is necessary and sufficient to promote Na(+)/K(+)-ATPase translocation to the plasma membrane. Phosphorylation of AS160 by Akt is also required in this process, whereas inactivation of the Rab GTPase-activating protein domain of AS160 promotes partial Na(+)/K(+)-ATPase translocation in the absence of insulin. We found that Rab10 functions as a downstream target of AS160 in insulin-induced Na(+)/K(+)-ATPase translocation. Collectively, these results suggest that Akt plays a major role in Na(+)/K(+)-ATPase intracellular translocation and thus in alveolar fluid reabsorption.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/enzimologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Insulina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Líquidos Corporais/efeitos dos fármacos , Líquidos Corporais/enzimologia , Bovinos , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo
2.
Mol Cell Biol ; 35(23): 3962-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26370512

RESUMO

The c-Jun amino-terminal kinase (JNK) plays a role in inflammation, proliferation, apoptosis, and cell adhesion and cell migration by phosphorylating paxillin and ß-catenin. JNK phosphorylation downstream of AMP-activated protein kinase (AMPK) activation is required for high CO2 (hypercapnia)-induced Na,K-ATPase endocytosis in alveolar epithelial cells. Here, we provide evidence that during hypercapnia, JNK promotes the phosphorylation of LMO7b, a scaffolding protein, in vitro and in intact cells. LMO7b phosphorylation was blocked by exposing the cells to the JNK inhibitor SP600125 and by infecting cells with dominant-negative JNK or AMPK adenovirus. The knockdown of the endogenous LMO7b or overexpression of mutated LMO7b with alanine substitutions of five potential JNK phosphorylation sites (LMO7b-5SA) or only Ser-1295 rescued both LMO7b phosphorylation and the hypercapnia-induced Na,K-ATPase endocytosis. Moreover, high CO2 promoted the colocalization and interaction of LMO7b and the Na,K-ATPase α1 subunit at the plasma membrane, which were prevented by SP600125 or by transfecting cells with LMO7b-5SA. Collectively, our data suggest that hypercapnia leads to JNK-induced LMO7b phosphorylation at Ser-1295, which facilitates the interaction of LMO7b with Na,K-ATPase at the plasma membrane promoting the endocytosis of Na,K-ATPase in alveolar epithelial cells.


Assuntos
Endocitose , Proteínas de Homeodomínio/metabolismo , Hipercapnia/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Dióxido de Carbono/metabolismo , Linhagem Celular , Ativação Enzimática , Proteínas de Homeodomínio/análise , Proteínas de Homeodomínio/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/análise , Dados de Sequência Molecular , Mutação , Fosforilação , Mapas de Interação de Proteínas , Ratos , ATPase Trocadora de Sódio-Potássio/análise , Fatores de Transcrição/análise , Fatores de Transcrição/genética
3.
PLoS One ; 7(10): e46696, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056407

RESUMO

Elevated CO(2) levels (hypercapnia) occur in patients with respiratory diseases and impair alveolar epithelial integrity, in part, by inhibiting Na,K-ATPase function. Here, we examined the role of c-Jun N-terminal kinase (JNK) in CO(2) signaling in mammalian alveolar epithelial cells as well as in diptera, nematodes and rodent lungs. In alveolar epithelial cells, elevated CO(2) levels rapidly induced activation of JNK leading to downregulation of Na,K-ATPase and alveolar epithelial dysfunction. Hypercapnia-induced activation of JNK required AMP-activated protein kinase (AMPK) and protein kinase C-ζ leading to subsequent phosphorylation of JNK at Ser-129. Importantly, elevated CO(2) levels also caused a rapid and prominent activation of JNK in Drosophila S2 cells and in C. elegans. Paralleling the results with mammalian epithelial cells, RNAi against Drosophila JNK fully prevented CO(2)-induced downregulation of Na,K-ATPase in Drosophila S2 cells. The importance and specificity of JNK CO(2) signaling was additionally demonstrated by the ability of mutations in the C. elegans JNK homologs, jnk-1 and kgb-2 to partially rescue the hypercapnia-induced fertility defects but not the pharyngeal pumping defects. Together, these data provide evidence that deleterious effects of hypercapnia are mediated by JNK which plays an evolutionary conserved, specific role in CO(2) signaling in mammals, diptera and nematodes.


Assuntos
Dióxido de Carbono/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Alvéolos Pulmonares/citologia , Animais , Linfoma de Burkitt , Caenorhabditis elegans , Drosophila , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/metabolismo , Evolução Molecular , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Mol Cell Biol ; 29(13): 3455-64, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19380482

RESUMO

Hypoxia promotes Na,K-ATPase endocytosis via protein kinase C zeta (PKC zeta)-mediated phosphorylation of the Na,K-ATPase alpha subunit. Here, we report that hypoxia leads to the phosphorylation of 5'-AMP-activated protein kinase (AMPK) at Thr172 in rat alveolar epithelial cells. The overexpression of a dominant-negative AMPK alpha subunit (AMPK-DN) construct prevented the hypoxia-induced endocytosis of Na,K-ATPase. The overexpression of the reactive oxygen species (ROS) scavenger catalase prevented hypoxia-induced AMPK activation. Moreover, hypoxia failed to activate AMPK in mitochondrion-deficient rho(0)-A549 cells, suggesting that mitochondrial ROS play an essential role in hypoxia-induced AMPK activation. Hypoxia-induced PKC zeta translocation to the plasma membrane and phosphorylation at Thr410 were prevented by the pharmacological inhibition of AMPK or by the overexpression of the AMPK-DN construct. We found that AMPK alpha phosphorylates PKC zeta on residue Thr410 within the PKC zeta activation loop. Importantly, the activation of AMPK alpha was necessary for hypoxia-induced AMPK-PKC zeta binding in alveolar epithelial cells. The overexpression of T410A mutant PKC zeta prevented hypoxia-induced Na,K-ATPase endocytosis, confirming that PKC zeta Thr410 phosphorylation is essential for this process. PKC zeta activation by AMPK is isoform specific, as small interfering RNA targeting the alpha1 but not the alpha2 catalytic subunit prevented PKC zeta activation. Accordingly, we provide the first evidence that hypoxia-generated mitochondrial ROS lead to the activation of the AMPK alpha1 isoform, which binds and directly phosphorylates PKC zeta at Thr410, thereby promoting Na,K-ATPase endocytosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Endocitose/fisiologia , Células Epiteliais/metabolismo , Hipóxia/metabolismo , Proteína Quinase C/metabolismo , Alvéolos Pulmonares/citologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Ativação Enzimática , Células Epiteliais/citologia , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocôndrias/metabolismo , Fosforilação , Proteína Quinase C/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA