Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 90: 1-10, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30340070

RESUMO

Applications for skin derived collagen materials, such as leather and acellular dermal matrices, usually require both strength and flexibility. In general, both the tensile modulus (which has an impact on flexibility) and strength are known to increase with fiber alignment, in the tensile direction, for practically all collagen-based tissues. The structural basis for flexibility in leather was investigated and the moisture content was varied. Small angle X-ray scattering was used to determine collagen fibril orientation, elongation and lateral intermolecular spacing in leather conditioned by different controlled humidity environments. Flexibility was measured by a three point bending test. Leather was prepared by tanning under biaxial loading to create leather with increased fibril alignment and thus strength, but this treatment also increased the stiffness. As collagen aligns, it not only strengthens the material but it also stiffens because tensile loading is then applied along the covalent chain of the collagen molecules, rather than at an angle to it. Here it has been shown that with higher moisture content greater flexibility of the material develops as water absorption inside collagen fibrils produces a larger lateral spacing between collagen molecules. It is suggested that water provides a lubricating effect in collagen fibrils, enabling greater freedom of movement and therefore greater flexibility. When collagen molecules align in the strain direction during tanning, leather stiffens not only by the fiber alignment itself but also because collagen molecules pack closer together, reducing the ability of the molecules to move relative to each other.


Assuntos
Colágeno/metabolismo , Fenômenos Mecânicos , Pele/metabolismo , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Resistência à Tração
2.
Data Brief ; 21: 1220-1226, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30456236

RESUMO

The data presented in this article are related to the research article entitled "Effect of collagen packing and moisture content on leather stiffness" (Kelly et al., 2018). This article describes how moisture content affects collagen packing and leather stiffness. Structural changes were experimentally introduced into ovine leather through biaxial strain during tanning (׳stretch tanning׳). Leather samples produced normally without strain (׳non-stretch tanned׳) and those produced by stretch tanning, were conditioned in a range of relative humidity environments and then analysed by small angle X-ray scattering and three point bend testing. The collagen D-spacing, lateral intermolecular spacing and flexural properties were measured under these varying moisture contents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA