Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(2): 543-560.e26, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585087

RESUMO

Tyrosine phosphorylation regulates multi-layered signaling networks with broad implications in (patho)physiology, but high-throughput methods for functional annotation of phosphotyrosine sites are lacking. To decipher phosphotyrosine signaling directly in tissue samples, we developed a mass-spectrometry-based interaction proteomics approach. We measured the in vivo EGF-dependent signaling network in lung tissue quantifying >1,000 phosphotyrosine sites. To assign function to all EGF-regulated sites, we determined their recruited protein signaling complexes in lung tissue by interaction proteomics. We demonstrated how mutations near tyrosine residues introduce molecular switches that rewire cancer signaling networks, and we revealed oncogenic properties of such a lung cancer EGFR mutant. To demonstrate the scalability of the approach, we performed >1,000 phosphopeptide pulldowns and analyzed them by rapid mass spectrometric analysis, revealing tissue-specific differences in interactors. Our approach is a general strategy for functional annotation of phosphorylation sites in tissues, enabling in-depth mechanistic insights into oncogenic rewiring of signaling networks.


Assuntos
Carcinogênese/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfotirosina/metabolismo , Células A549 , Animais , Humanos , Espectrometria de Massas/métodos , Mutação , Fosfoproteínas/metabolismo , Fosforilação , Proteômica , Ratos , Ratos Sprague-Dawley , Peixe-Zebra
2.
Nature ; 574(7776): 103-107, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31511700

RESUMO

The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.


Assuntos
DNA Antigo/análise , Esmalte Dentário/metabolismo , Fósseis , Perissodáctilos/classificação , Perissodáctilos/genética , Filogenia , Proteoma/genética , Proteômica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Teorema de Bayes , História Antiga , Humanos , Masculino , Perissodáctilos/metabolismo , Fosforilação/genética , Proteoma/análise
3.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330837

RESUMO

Ca2+/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKIIα by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance γ-hydroxybutyrate (GHB) bind selectively to CaMKIIα. By means of a 2.2-Å x-ray crystal structure of ligand-bound CaMKIIα hub, we reveal the molecular details of the binding site deep within the hub. Furthermore, we show that binding of GHB and related analogs to this site promotes concentration-dependent increases in hub thermal stability believed to alter holoenzyme functionality. Selectively under states of pathological CaMKIIα activation, hub ligands provide a significant and sustained neuroprotection, which is both time and dose dependent. This is demonstrated in neurons exposed to excitotoxicity and in a mouse model of cerebral ischemia with the selective GHB analog, HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid). Together, our results indicate a hitherto unknown mechanism for neuroprotection by a highly specific and unforeseen interaction between the CaMKIIα hub domain and small molecule brain-penetrant GHB analogs. This establishes GHB analogs as powerful tools for investigating CaMKII neuropharmacology in general and as potential therapeutic compounds for cerebral ischemia in particular.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Oxibato de Sódio/metabolismo , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Ácidos Carboxílicos/farmacologia , Cristalografia por Raios X , Ciclopentanos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neuroproteção , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
4.
Mol Cell ; 53(6): 1053-66, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24582501

RESUMO

Loss of small ubiquitin-like modification (SUMOylation) in mice causes genomic instability due to the missegregation of chromosomes. Currently, little is known about the identity of relevant SUMO target proteins that are involved in this process and about global SUMOylation dynamics during cell-cycle progression. We performed a large-scale quantitative proteomics screen to address this and identified 593 proteins to be SUMO-2 modified, including the Forkhead box transcription factor M1 (FoxM1), a key regulator of cell-cycle progression and chromosome segregation. SUMOylation of FoxM1 peaks during G2 and M phase, when FoxM1 transcriptional activity is required. We found that a SUMOylation-deficient FoxM1 mutant was less active compared to wild-type FoxM1, implying that SUMOylation of the protein enhances its transcriptional activity. Mechanistically, SUMOylation blocks the dimerization of FoxM1, thereby relieving FoxM1 autorepression. Cells deficient for FoxM1 SUMOylation showed increased levels of polyploidy. Our findings contribute to understanding the role of SUMOylation during cell-cycle progression.


Assuntos
Ciclo Celular/genética , Segregação de Cromossomos , Fatores de Transcrição Forkhead/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Transcrição Gênica , Sequência de Aminoácidos , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Instabilidade Genômica , Células HeLa , Humanos , Dados de Sequência Molecular , Multimerização Proteica , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação
5.
Mol Cell Proteomics ; 19(12): 2139-2157, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33020190

RESUMO

Trypsin is the protease of choice in bottom-up proteomics. However, its application can be limited by the amino acid composition of target proteins and the pH of the digestion solution. In this study we characterize ProAlanase, a protease from the fungus Aspergillus niger that cleaves primarily on the C-terminal side of proline and alanine residues. ProAlanase achieves high proteolytic activity and specificity when digestion is carried out at acidic pH (1.5) for relatively short (2 h) time periods. To elucidate the potential of ProAlanase in proteomics applications, we conducted a series of investigations comprising comparative multi-enzymatic profiling of a human cell line proteome, histone PTM analysis, ancient bone protein identification, phosphosite mapping and de novo sequencing of a proline-rich protein and disulfide bond mapping in mAb. The results demonstrate that ProAlanase is highly suitable for proteomics analysis of the arginine- and lysine-rich histones, enabling high sequence coverage of multiple histone family members. It also facilitates an efficient digestion of bone collagen thanks to the cleavage at the C terminus of hydroxyproline which is highly prevalent in collagen. This allows to identify complementary proteins in ProAlanase- and trypsin-digested ancient bone samples, as well as to increase sequence coverage of noncollagenous proteins. Moreover, digestion with ProAlanase improves protein sequence coverage and phosphosite localization for the proline-rich protein Notch3 intracellular domain (N3ICD). Furthermore, we achieve a nearly complete coverage of N3ICD protein by de novo sequencing using the combination of ProAlanase and tryptic peptides. Finally, we demonstrate that ProAlanase is efficient in disulfide bond mapping, showing high coverage of disulfide-containing regions in a nonreduced mAb.


Assuntos
Dissulfetos/metabolismo , Peptídeo Hidrolases/metabolismo , Proteômica , Tripsina/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Mamutes , Paleontologia , Peptídeo Hidrolases/química , Fosforilação , Proteoma/metabolismo
6.
Nature ; 522(7554): 81-4, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25799987

RESUMO

No large group of recently extinct placental mammals remains as evolutionarily cryptic as the approximately 280 genera grouped as 'South American native ungulates'. To Charles Darwin, who first collected their remains, they included perhaps the 'strangest animal[s] ever discovered'. Today, much like 180 years ago, it is no clearer whether they had one origin or several, arose before or after the Cretaceous/Palaeogene transition 66.2 million years ago, or are more likely to belong with the elephants and sirenians of superorder Afrotheria than with the euungulates (cattle, horses, and allies) of superorder Laurasiatheria. Morphology-based analyses have proved unconvincing because convergences are pervasive among unrelated ungulate-like placentals. Approaches using ancient DNA have also been unsuccessful, probably because of rapid DNA degradation in semitropical and temperate deposits. Here we apply proteomic analysis to screen bone samples of the Late Quaternary South American native ungulate taxa Toxodon (Notoungulata) and Macrauchenia (Litopterna) for phylogenetically informative protein sequences. For each ungulate, we obtain approximately 90% direct sequence coverage of type I collagen α1- and α2-chains, representing approximately 900 of 1,140 amino-acid residues for each subunit. A phylogeny is estimated from an alignment of these fossil sequences with collagen (I) gene transcripts from available mammalian genomes or mass spectrometrically derived sequence data obtained for this study. The resulting consensus tree agrees well with recent higher-level mammalian phylogenies. Toxodon and Macrauchenia form a monophyletic group whose sister taxon is not Afrotheria or any of its constituent clades as recently claimed, but instead crown Perissodactyla (horses, tapirs, and rhinoceroses). These results are consistent with the origin of at least some South American native ungulates from 'condylarths', a paraphyletic assembly of archaic placentals. With ongoing improvements in instrumentation and analytical procedures, proteomics may produce a revolution in systematics such as that achieved by genomics, but with the possibility of reaching much further back in time.


Assuntos
Colágeno Tipo I/química , Fósseis , Mamíferos/classificação , Filogenia , Sequência de Aminoácidos , Animais , Osso e Ossos/química , Bovinos , Colágeno Tipo I/genética , Feminino , Perissodáctilos/classificação , Placenta , Gravidez , Proteômica , América do Sul
7.
Mol Cell ; 49(2): 368-78, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23201125

RESUMO

Posttranslational modifications on core histones can serve as binding scaffolds for chromatin-associated proteins. Proteins that specifically bind to or "read" these modifications were previously identified in mass spectrometry-based proteomics screens based on stable isotope-labeling in cell lines. Here we describe a sensitive, label-free histone peptide pull-down technology with extracts of different mouse tissues. Applying this workflow to the classical activating and repressive epigenetic marks on histone H3, H3K4me3, and H3K9me3, we identified known and putative readers in extracts from brain, liver, kidney, and testis. A large class of proteins were specifically repelled by H3K4me3. Our screen reached near-saturation of direct interactors, most of which are ubiquitously expressed. In addition, it revealed a number of specialized readers in tissues such as testis. Apart from defining the chromatin interaction landscape in mouse tissues, our workflow can be used for peptides with different modifications and cell types of any organism.


Assuntos
Cromatina/metabolismo , Mapeamento de Interação de Proteínas , Proteoma/metabolismo , Animais , Encéfalo/metabolismo , Cromatografia de Afinidade , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Rim/metabolismo , Masculino , Metilação , Camundongos , Especificidade de Órgãos , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteoma/isolamento & purificação , Proteômica , Espectrometria de Massas em Tandem , Testículo/metabolismo
8.
Nature ; 499(7456): 74-8, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23803765

RESUMO

The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.


Assuntos
Evolução Molecular , Genoma/genética , Cavalos/genética , Filogenia , Animais , Conservação dos Recursos Naturais , DNA/análise , DNA/genética , Espécies em Perigo de Extinção , Equidae/classificação , Equidae/genética , Fósseis , Variação Genética/genética , História Antiga , Cavalos/classificação , Proteínas/análise , Proteínas/química , Proteínas/genética , Yukon
9.
J Proteome Res ; 17(1): 727-738, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29183128

RESUMO

Progress in proteomics is mainly driven by advances in mass spectrometric (MS) technologies. Here we benchmarked the performance of the latest MS instrument in the benchtop Orbitrap series, the Q Exactive HF-X, against its predecessor for proteomics applications. A new peak-picking algorithm, a brighter ion source, and optimized ion transfers enable productive MS/MS acquisition above 40 Hz at 7500 resolution. The hardware and software improvements collectively resulted in improved peptide and protein identifications across all comparable conditions, with an increase of up to 50 percent at short LC-MS gradients, yielding identification rates of more than 1000 unique peptides per minute. Alternatively, the Q Exactive HF-X is capable of achieving the same proteome coverage as its predecessor in approximately half the gradient time or at 10-fold lower sample loads. The Q Exactive HF-X also enables rapid phosphoproteomics with routine analysis of more than 5000 phosphopeptides with short single-shot 15 min LC-MS/MS measurements, or 16 700 phosphopeptides quantified across ten conditions in six gradient hours using TMT10-plex and offline peptide fractionation. Finally, exciting perspectives for data-independent acquisition are highlighted with reproducible identification of 55 000 unique peptides covering 5900 proteins in half an hour of MS analysis.


Assuntos
Proteômica/métodos , Espectrometria de Massas em Tandem/instrumentação , Algoritmos , Humanos , Fosfopeptídeos/análise , Proteômica/instrumentação , Espectrometria de Massas em Tandem/métodos , Fatores de Tempo
10.
J Proteome Res ; 17(11): 4008-4016, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30220210

RESUMO

A popular method for peptide quantification relies on isobaric labeling such as tandem mass tags (TMT), which enables multiplexed proteome analyses. Quantification is achieved by reporter ions generated by fragmentation in a tandem mass spectrometer. However, with higher degrees of multiplexing, the smaller mass differences between the reporter ions increase the mass resolving power requirements. This contrasts with faster peptide sequencing capabilities enabled by lowered mass resolution on Orbitrap instruments. It is therefore important to determine the mass resolution limits for highly multiplexed quantification when maximizing proteome depth. Here, we defined the lower boundaries for resolving TMT reporter ions with 0.0063 Da mass differences using an ultra-high-field Orbitrap mass spectrometer. We found the optimal method depends on the relative ratio between closely spaced reporter ions and that 64 ms transient acquisition time provided sufficient resolving power for separating TMT reporter ions with absolute ratio changes up to 16-fold. Furthermore, a 32 ms transient processed with phase-constrained spectrum deconvolution provides >50% more identifications with >99% quantified but with a slight loss in quantification precision and accuracy. These findings should guide decisions on what Orbitrap resolution settings to use in future proteomics experiments, relying on isobaric TMT reporter ion quantification.


Assuntos
Peptídeos/análise , Proteoma/isolamento & purificação , Proteômica/métodos , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem/métodos , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/química , Células Epiteliais/citologia , Células HeLa , Humanos , Íons , Células Jurkat , Neurônios/química , Neurônios/patologia , Osteoblastos/química , Osteoblastos/patologia , Proteólise , Proteoma/genética , Proteoma/metabolismo , Epitélio Pigmentado da Retina/química , Epitélio Pigmentado da Retina/citologia
11.
Anal Chem ; 90(13): 8202-8210, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29878755

RESUMO

Disulfide bond mapping is a critical task in protein characterization as protein stability, structure, and function is dependent on correct cysteine connectivities. Mass spectrometry (MS) is the method of choice for this, providing fast and accurate characterization of simple disulfide bonds. Disulfide mapping by liquid chromatography tandem mass spectrometry (LC-MS/MS) is performed by identifying disulfide-bonded partner peptides following proteolytic digestion. With the recently introduced ability to assign complex disulfide patterns by online postcolumn partial disulfide reduction by in-source reduction (ISR) in a LC-ISR-MS/MS methodology, the main challenge is data analysis to ensure detection of both expected and unexpected disulfide species. In this study, we introduced a workflow for confident and unbiased mapping of complex disulfide bonds using the powerful combination of extracted ion chromatograms (XICs) of LC-ISR-MS/MS data. With postcolumn partial reduction, identical LC retention times of intact disulfide-bonded species, their constituting free peptides, and partially reduced variants were observed. Subsequent selective MS/MS fragmentation of all reduction products allowed confident identification of free cysteine-containing peptides using a classical shotgun proteomics database search. Matching XICs of the identified cysteine-containing peptides allowed identification of both predicted and unpredicted disulfide species, including unforeseen proteolytic specificities, missed cleavage sites, scrambled disulfide variants, and the presence of disulfide-entangled complexes. Applying this workflow, we successfully mapped the complex disulfide bonds of tertiapin and the epidermal growth factor (EGF) family members transforming growth factor α (TGFα) and EGF. In addition, we were able to characterize the disulfide patterns of the special disulfide fold of the TGFß superfamily in an all-online methodology.


Assuntos
Cromatografia Líquida/métodos , Dissulfetos/química , Espectrometria de Massas em Tandem/métodos , Fluxo de Trabalho , Sequência de Aminoácidos , Modelos Moleculares , Peptídeo Hidrolases/metabolismo , Estrutura Secundária de Proteína , Fator de Crescimento Transformador beta/química , Fator de Crescimento Transformador beta/metabolismo
12.
Anal Chem ; 89(11): 5949-5957, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28453249

RESUMO

Mapping of disulfide bonds is an essential part of protein characterization to ensure correct cysteine pairings. For this, mass spectrometry (MS) is the most widely used technique due to fast and accurate characterization. However, MS-based disulfide mapping is challenged when multiple disulfide bonds are present in complicated patterns. This includes the presence of disulfide bonds in nested patterns and closely spaced cysteines. Unambiguous mapping of such disulfide bonds typically requires advanced MS approaches. In this study, we exploited in-source reduction (ISR) of disulfide bonds during the electrospray ionization process to facilitate disulfide bond assignments. We successfully developed a LC-ISR-MS/MS methodology to use as an online and fully automated partial reduction procedure. Postcolumn partial reduction by ISR provided fast and easy identification of peptides involved in disulfide bonding from nonreduced proteolytic digests, due to the concurrent detection of disulfide-containing peptide species and their composing free peptides. Most importantly, intermediate partially reduced species containing only a single disulfide bond were also generated, from which unambiguous assignment of individual disulfide bonds could be done in species containing closely spaced disulfide bonds. The strength of this methodology was demonstrated by complete mapping of all four disulfide bonds in lysozyme and all 17 disulfide bonds in human serum albumin, including nested disulfide bonds and motifs of adjacent cysteine residues.

13.
Mol Cell Proteomics ; 13(8): 1914-24, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24895383

RESUMO

Unambiguous identification of tandem mass spectra is a cornerstone in mass-spectrometry-based proteomics. As the study of post-translational modifications (PTMs) by means of shotgun proteomics progresses in depth and coverage, the ability to correctly identify PTM-bearing peptides is essential, increasing the demand for advanced data interpretation. Several PTMs are known to generate unique fragment ions during tandem mass spectrometry, the so-called diagnostic ions, which unequivocally identify a given mass spectrum as related to a specific PTM. Although such ions offer tremendous analytical advantages, algorithms to decipher MS/MS spectra for the presence of diagnostic ions in an unbiased manner are currently lacking. Here, we present a systematic spectral-pattern-based approach for the discovery of diagnostic ions and new fragmentation mechanisms in shotgun proteomics datasets. The developed software tool is designed to analyze large sets of high-resolution peptide fragmentation spectra independent of the fragmentation method, instrument type, or protease employed. To benchmark the software tool, we analyzed large higher-energy collisional activation dissociation datasets of samples containing phosphorylation, ubiquitylation, SUMOylation, formylation, and lysine acetylation. Using the developed software tool, we were able to identify known diagnostic ions by comparing histograms of modified and unmodified peptide spectra. Because the investigated tandem mass spectra data were acquired with high mass accuracy, unambiguous interpretation and determination of the chemical composition for the majority of detected fragment ions was feasible. Collectively we present a freely available software tool that allows for comprehensive and automatic analysis of analogous product ions in tandem mass spectra and systematic mapping of fragmentation mechanisms related to common amino acids.


Assuntos
Peptídeos/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Bases de Dados de Proteínas , Íons , Processamento de Proteína Pós-Traducional , Software
14.
Mol Cell Proteomics ; 13(8): 1905-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24760958

RESUMO

Quality control is increasingly recognized as a crucial aspect of mass spectrometry based proteomics. Several recent papers discuss relevant parameters for quality control and present applications to extract these from the instrumental raw data. What has been missing, however, is a standard data exchange format for reporting these performance metrics. We therefore developed the qcML format, an XML-based standard that follows the design principles of the related mzML, mzIdentML, mzQuantML, and TraML standards from the HUPO-PSI (Proteomics Standards Initiative). In addition to the XML format, we also provide tools for the calculation of a wide range of quality metrics as well as a database format and interconversion tools, so that existing LIMS systems can easily add relational storage of the quality control data to their existing schema. We here describe the qcML specification, along with possible use cases and an illustrative example of the subsequent analysis possibilities. All information about qcML is available at http://code.google.com/p/qcml.


Assuntos
Espectrometria de Massas/normas , Software , Bases de Dados de Proteínas , Linguagens de Programação , Proteômica/normas , Controle de Qualidade
15.
J Proteome Res ; 13(12): 6187-95, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25349961

RESUMO

Shotgun proteomics is a powerful technology for global analysis of proteins and their post-translational modifications. Here, we investigate the faster sequencing speed of the latest Q Exactive HF mass spectrometer, which features an ultra-high-field Orbitrap mass analyzer. Proteome coverage is evaluated by four different acquisition methods and benchmarked across three generations of Q Exactive instruments (ProteomeXchange data set PXD001305). We find the ultra-high-field Orbitrap mass analyzer to be capable of attaining a sequencing speed above 20 Hz, and it routinely exceeds 10 peptide spectrum matches per second or up to 600 new peptides sequenced per gradient minute. We identify 4400 proteins from 1 µg of HeLa digest using a 1 h gradient, which is an approximately 30% improvement compared to that with previous instrumentation. In addition, we show that very deep proteome coverage can be achieved in less than 24 h of analysis time by offline high-pH reversed-phase peptide fractionation, from which we identify more than 140,000 unique peptide sequences. This is comparable to state-of-the-art multiday, multienzyme efforts. Finally, the acquisition methods are evaluated for single-shot phosphoproteomics, where we identify 7600 unique HeLa phosphopeptides in one gradient hour and find the quality of fragmentation spectra to be more important than quantity for accurate site assignment.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Benchmarking/métodos , Fracionamento Químico , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Peptídeos/metabolismo , Proteoma/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de Proteína/métodos
16.
J Cell Sci ; 125(Pt 13): 3243-53, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22454517

RESUMO

The Ndc80 complex establishes end-on attachment of kinetochores to microtubules, which is essential for chromosome segregation. The Ndc80 subunit is characterized by an N-terminal region that binds directly to microtubules, and a long coiled-coil region that interacts with Nuf2. A loop region in Ndc80 that generates a kink in the structure disrupts the long coiled-coil region but the exact function of this loop, has until now, not been clear. Here we show that this loop region is essential for end-on attachment of kinetochores to microtubules in human cells. Cells expressing loop mutants of Ndc80 are unable to align the chromosomes, and stable kinetochore fibers are absent. Through quantitative mass spectrometry and immunofluorescence we found that the binding of the spindle and kinetochore associated (Ska) complex depends on the loop region, explaining why end-on attachment is defective. This underscores the importance of the Ndc80 loop region in coordinating chromosome segregation through the recruitment of specific proteins to the kinetochore.


Assuntos
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Segregação de Cromossomos , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Clonagem Molecular , Proteínas do Citoesqueleto , Imunofluorescência , Humanos , Espectrometria de Massas/métodos , Metáfase , Microtúbulos/genética , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico , Interferência de RNA , Análise de Sequência de Proteína/métodos
17.
Mol Cell Proteomics ; 11(12): 1578-85, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22790023

RESUMO

Posttranslational modifications of proteins increase the complexity of the cellular proteome and enable rapid regulation of protein functions in response to environmental changes. Protein ubiquitylation is a central regulatory posttranslational modification that controls numerous biological processes including proteasomal degradation of proteins, DNA damage repair and innate immune responses. Here we combine high-resolution mass spectrometry with single-step immunoenrichment of di-glycine modified peptides for mapping of endogenous putative ubiquitylation sites in murine tissues. We identify more than 20,000 unique ubiquitylation sites on proteins involved in diverse biological processes. Our data reveals that ubiquitylation regulates core signaling pathways common for each of the studied tissues. In addition, we discover that ubiquitylation regulates tissue-specific signaling networks. Many tissue-specific ubiquitylation sites were obtained from brain highlighting the complexity and unique physiology of this organ. We further demonstrate that different di-glycine-lysine-specific monoclonal antibodies exhibit sequence preferences, and that their complementary use increases the depth of ubiquitylation site analysis, thereby providing a more unbiased view of protein ubiquitylation.


Assuntos
Proteoma/metabolismo , Ubiquitina/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Dipeptídeos/imunologia , Glicilglicina/química , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Proteômica/métodos , Transdução de Sinais , Ubiquitinação
18.
J Proteome Res ; 11(6): 3487-97, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22537090

RESUMO

Advances in proteomics are continually driven by the introduction of new mass spectrometric instrumentation with improved performances. The recently introduced quadrupole Orbitrap (Q Exactive) tandem mass spectrometer allows fast acquisition of high-resolution higher-energy collisional dissociation (HCD) tandem mass spectra due to the parallel mode of operation, where the generation, filling, and storage of fragment ions can be performed while simultaneously measuring another ion packet in the Orbitrap mass analyzer. In this study, data-dependent acquisition methods for "fast" or "sensitive" scanning were optimized and assessed by comparing stable isotope labeled yeast proteome coverage. We discovered that speed was the most important parameter for sample loads above 125 ng, where a 95 ms HCD scanning method allowed for identification and quantification of more than 2000 yeast proteins from 1 h of analysis time. At sample loads below 125 ng, a 156 ms HCD acquisition method improved the sensitivity, mass accuracy, and quality of data and enabled us to identify 30% more proteins and peptides than the faster scanning method. A similar effect was observed when the LC gradient was extended to 2 or 3 h for the analysis of complex mammalian whole cell lysates. Using a 3 h LC gradient, the sensitive method enabled identification of more than 4000 proteins from 1 µg of tryptic HeLa digest, which was almost 200 more identifications compared to the faster scanning method. Our results demonstrate that peptide identification on a quadrupole Orbitrap is dependent on sample amounts, acquisition speed, and data quality, which emphasizes the need for acquisition methods tailored for different sample loads and analytical preferences.


Assuntos
Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/isolamento & purificação , Proteoma/química , Proteoma/isolamento & purificação , Proteômica , Sensibilidade e Especificidade
19.
Mol Cell Proteomics ; 9(7): 1540-53, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20363803

RESUMO

Seven-transmembrane receptors (7TMRs) signal through the well described heterotrimeric G proteins but can also activate G protein-independent signaling pathways of which the impact and complexity are less understood. The angiotensin II type 1 receptor (AT(1)R) is a prototypical 7TMR and an important drug target in cardiovascular diseases. "Biased agonists" with intrinsic "functional selectivity" that simultaneously blocks Galpha(q) protein activity and activates G protein-independent pathways of the AT(1)R confer important perspectives in treatment of cardiovascular diseases. In this study, we performed a global quantitative phosphoproteomics analysis of the AT(1)R signaling network. We analyzed ligand-stimulated SILAC (stable isotope labeling by amino acids in cell culture) cells by high resolution (LTQ-Orbitrap) MS and compared the phosphoproteomes of the AT(1)R agonist angiotensin II and the biased agonist [Sar(1),Ile(4),Ile(8)]angiotensin II (SII angiotensin II), which only activates the Galpha(q) protein-independent signaling. We quantified more than 10,000 phosphorylation sites of which 1183 were regulated by angiotensin II or its analogue SII angiotensin II. 36% of the AT(1)R-regulated phosphorylations were regulated by SII angiotensin II. Analysis of phosphorylation site patterns showed a striking distinction between protein kinases activated by Galpha(q) protein-dependent and -independent mechanisms, and we now place protein kinase D as a key protein involved in both Galpha(q)-dependent and -independent AT(1)R signaling. This study provides substantial novel insight into angiotensin II signal transduction and is the first study dissecting the differences between a full agonist and a biased agonist from a 7TMR on a systems-wide scale. Importantly, it reveals a previously unappreciated diversity and quantity of Galpha(q) protein-independent signaling and uncovers novel signaling pathways. We foresee that the amount and diversity of G protein-independent signaling may be more pronounced than previously recognized for other 7TMRs as well. Quantitative mass spectrometry is a promising tool for evaluation of the signaling properties of biased agonists to other receptors in the future.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Fosfoproteínas/análise , Proteoma/análise , Receptor Tipo 1 de Angiotensina , Sequência de Aminoácidos , Linhagem Celular , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/antagonistas & inibidores , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Receptor Tipo 1 de Angiotensina/agonistas , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais/fisiologia
20.
Nat Commun ; 13(1): 6235, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266275

RESUMO

Peptides play important roles in regulating biological processes and form the basis of a multiplicity of therapeutic drugs. To date, only about 300 peptides in human have confirmed bioactivity, although tens of thousands have been reported in the literature. The majority of these are inactive degradation products of endogenous proteins and peptides, presenting a needle-in-a-haystack problem of identifying the most promising candidate peptides from large-scale peptidomics experiments to test for bioactivity. To address this challenge, we conducted a comprehensive analysis of the mammalian peptidome across seven tissues in four different mouse strains and used the data to train a machine learning model that predicts hundreds of peptide candidates based on patterns in the mass spectrometry data. We provide in silico validation examples and experimental confirmation of bioactivity for two peptides, demonstrating the utility of this resource for discovering lead peptides for further characterization and therapeutic development.


Assuntos
Aprendizado de Máquina , Peptídeos , Humanos , Camundongos , Animais , Espectrometria de Massas , Peptídeos/química , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA