Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS One ; 19(3): e0299400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502680

RESUMO

Abiotic stresses occur more often in combination than alone under regular field conditions limiting in more severe way crop production. Stress recognition in plants primarily occurs in the plasma membrane, modification of which is necessary to maintain homeostasis in response to it. It is known that lipid transport proteins (ns-LTPs) participate in modification of the lipidome of cell membranes. Representative of this group, ns-LTP2.8, may be involved in the reaction to abiotic stress of germinating barley plants by mediating the intracellular transport of hydrophobic particles, such as lipids, helping to maintain homeostasis. The ns-LTP2.8 protein was selected for analysis due to its ability to transport not only linear hydrophobic molecules but also compounds with a more complex spatial structure. Moreover, ns-LTP2.8 has been qualified as a member of pathogenesis-related proteins, which makes it particularly important in relation to its high allergenic potential. This paper demonstrates for the first time the influence of various abiotic stresses acting separately as well as in their combinations on the change in the ns-LTP2.8 transcript, ns-LTP2.8 protein and total soluble protein content in the embryonal axes of germinating spring barley genotypes with different ns-LTP2.8 allelic forms and stress tolerance. Tissue localization of ns-LTP2.8 transcript as well as ns-LTP2.8 protein were also examined. Although the impact of abiotic stresses on the regulation of gene transcription and translation processes remains not fully recognized, in this work we managed to demonstrate different impact on applied stresses on the fundamental cellular processes in very little studied tissue of the embryonal axis of barley.


Assuntos
Hordeum , Hordeum/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Genótipo , Estresse Fisiológico/genética
2.
Plant Signal Behav ; 19(1): 2371693, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38923879

RESUMO

One of the main signal transduction pathways that modulate plant growth and stress responses, including drought, is the action of phytohormones. Recent advances in omics approaches have facilitated the exploration of plant genomes. However, the molecular mechanisms underlying the response in the crown of barley, which plays an essential role in plant performance under stress conditions and regeneration after stress treatment, remain largely unclear. The objective of the present study was the elucidation of drought-induced molecular reactions in the crowns of different barley phytohormone mutants. We verified the hypothesis that defects of gibberellins, brassinosteroids, and strigolactones action affect the transcriptomic, proteomic, and hormonal response of barley crown to the transitory drought influencing plant development under stress. Moreover, we assumed that due to the strong connection between strigolactones and branching the hvdwarf14.d mutant, with dysfunctional receptor of strigolactones, manifests the most abundant alternations in crowns and phenotype under drought. Finally, we expected to identify components underlying the core response to drought which are independent of the genetic background. Large-scale analyses were conducted using gibberellins-biosynthesis, brassinosteroids-signaling, and strigolactones-signaling mutants, as well as reference genotypes. Detailed phenotypic evaluation was also conducted. The obtained results clearly demonstrated that hormonal disorders caused by mutations in the HvGA20ox2, HvBRI1, and HvD14 genes affected the multifaceted reaction of crowns to drought, although the expression of these genes was not induced by stress. The study further detected not only genes and proteins that were involved in the drought response and reacted specifically in mutants compared to the reaction of reference genotypes and vice versa, but also the candidates that may underlie the genotype-universal stress response. Furthermore, candidate genes involved in phytohormonal interactions during the drought response were identified. We also found that the interplay between hormones, especially gibberellins and auxins, as well as strigolactones and cytokinins may be associated with the regulation of branching in crowns exposed to drought. Overall, the present study provides novel insights into the molecular drought-induced responses that occur in barley crowns.


Assuntos
Secas , Hordeum , Mutação , Reguladores de Crescimento de Plantas , Hordeum/genética , Hordeum/metabolismo , Hordeum/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Mutação/genética , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas , Brassinosteroides/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Lactonas/metabolismo
3.
J Appl Genet ; 64(2): 289-302, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36897474

RESUMO

In the lifetime of a plant, flowering is not only an essential part of the reproductive process but also a critical developmental stage that can be vulnerable to environmental stresses. To ensure survival during drought, plants accelerate the flowering process, and this response is known as "drought escape." HvGAMYB-transcription factor associated, among others, with flowering process and anther development in barley-has also an important role in developmental modification and yield performance in plants subjected to stressed conditions. Due to the fact that information about the mechanisms associated both with the flowering acceleration and the anther or pollen disruption is limited, the exploration of the potential HvGAMYB role in flower development may shed light on pollen and spike morphology formations in plants grown under unfavorable water conditions. The aim of this study was to characterize differences in responses to drought among early- and late-heading barley genotypes. These two subgroups of plants-differentiated in terms of phenology-were analyzed, and traits linked to plant phenotype, physiology, and yield were investigated. In our study, the drought stress reactions of two barley subgroups showed a wide range of diversity in terms of yield performance, anther morphology, chlorophyll fluorescence kinetics, and pollen viability. The studied plants exhibited different yield performances under control and drought conditions. Moreover, the random distribution of genotypes on the biplot showing variability of OJIP parameters in the second developmental point of our investigation revealed that prolonged drought stress caused that among early- and late-heading plants, the studied genotypes exhibited different responses to applied stress conditions. The results of this study also showed that the HvGAMYB expression level was correlated positively with traits associated with lateral spike morphology in the second developmental point of this investigation, which showed that this association occurred only under prolonged drought and highlighted the drought stress duration effect on the HvGAMYB expression level.


Assuntos
Hordeum , Hordeum/genética , Secas , Fenótipo , Genótipo , Água
4.
Front Plant Sci ; 14: 1077631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760640

RESUMO

The root system is a key component for plant survival and productivity. In particular, under stress conditions, developing plants with a better root architecture can ensure productivity. The objectives of this study were to investigate the phenotypic variation of selected root- and yield-related traits in a diverse panel of spring barley genotypes. By performing a genome-wide association study (GWAS), we identified several associations underlying the variations occurring in root- and yield-related traits in response to natural variations in soil moisture. Here, we report the results of the GWAS based on both individual single-nucleotide polymorphism markers and linkage disequilibrium (LD) blocks of markers for 11 phenotypic traits related to plant morphology, grain quality, and root system in a group of spring barley accessions grown under field conditions. We also evaluated the root structure of these accessions by using a nondestructive method based on electrical capacitance. The results showed the importance of two LD-based blocks on chromosomes 2H and 7H in the expression of root architecture and yield-related traits. Our results revealed the importance of the region on the short arm of chromosome 2H in the expression of root- and yield-related traits. This study emphasized the pleiotropic effect of this region with respect to heading time and other important agronomic traits, including root architecture. Furthermore, this investigation provides new insights into the roles played by root traits in the yield performance of barley plants grown under natural conditions with daily variations in soil moisture content.

5.
Cells ; 12(12)2023 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-37371126

RESUMO

Drought stress inducing pollen sterility can reduce crop yield worldwide. The regulatory crosstalk associated with the effects of drought on pollen formation at the cellular level has not been explored in detail so far. In this study, we performed morphological and cytoembryological analysis of anther perturbations and examined pollen development in two spring barley genotypes that differ in earliness and drought tolerance. The Syrian breeding line CamB (drought-tolerant) and the European cultivar Lubuski (drought-sensitive) were used as experimental materials to analyze the drought-induced changes in yield performance, chlorophyll fluorescence kinetics, the pollen grain micromorphology and ultrastructure during critical stages of plant development. In addition, fluctuations in HvGAMYB expression were studied, as this transcription factor is closely associated with the development of the anther. In the experiments, the studied plants were affected by drought, as was confirmed by the analyses of yield performance and chlorophyll fluorescence kinetics. However, contrary to our expectations, the pollen development of plants grown under specific conditions was not severely affected. The results also suggest that growth modification, as well as the perturbation in light distribution, can affect the HvGAMYB expression. This study demonstrated that the duration of the vegetation period can influence plant drought responses and, as a consequence, the processes associated with pollen development as every growth modification changes the dynamics of drought effects as well as the duration of plant exposition to drought.


Assuntos
Hordeum , Hordeum/genética , Resistência à Seca , Melhoramento Vegetal , Genótipo , Pólen/genética , Clorofila
6.
Cells ; 12(13)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37443719

RESUMO

Plants, as sessile organisms, have developed sophisticated mechanisms to survive in changing environments. Recent advances in omics approaches have facilitated the exploration of plant genomes; however, the molecular mechanisms underlying the responses of barley and other cereals to multiple abiotic stresses remain largely unclear. Exposure to stress stimuli affects many proteins with regulatory and protective functions. In the present study, we employed liquid chromatography coupled with high-resolution mass spectrometry to identify stress-responsive proteins on the genome-wide scale of barley flag leaves exposed to drought, heat, or both. Profound alterations in the proteome of genotypes with different flag leaf sizes were found. The role of stress-inducible proteins was discussed and candidates underlying the universal stress response were proposed, including dehydrins. Moreover, the putative functions of several unknown proteins that can mediate responses to stress stimuli were explored using Pfam annotation, including calmodulin-like proteins. Finally, the confrontation of protein and mRNA abundances was performed. A correlation network between transcripts and proteins performance revealed several components of the stress-adaptive pathways in barley flag leaf. Taking the findings together, promising candidates for improving the tolerance of barley and other cereals to multivariate stresses were uncovered. The presented proteomic landscape and its relationship to transcriptomic remodeling provide novel insights for understanding the molecular responses of plants to environmental cues.


Assuntos
Hordeum , Proteoma , Proteoma/metabolismo , Hordeum/fisiologia , Secas , Proteômica/métodos , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Choque Térmico/metabolismo , Grão Comestível/metabolismo , Folhas de Planta/metabolismo
7.
Front Plant Sci ; 13: 1096685, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726667

RESUMO

Despite numerous studies aimed at unraveling the genetic background of barley's response to abiotic stress, the modulation of the transcriptome induced by combinatorial drought and increased temperature remains largely unrecognized. Very limited studies were done, especially on the flag leaf, which plays an important role in grain filling in cereals. In the present study, transcriptome profiles, along with chlorophyll fluorescence parameters and yield components, were compared between barley genotypes with different flag leaf sizes under single and combined drought and heat stress. High-throughput mRNA sequencing revealed 2,457 differentially expressed genes, which were functionally interpreted using Gene Ontology term enrichment analysis. The transcriptomic signature under double stress was more similar to effects caused by drought than by elevated temperature; it was also manifested at phenotypic and chlorophyll fluorescence levels. Both common and stress-specific changes in transcript abundance were identified. Genes regulated commonly across stress treatments, determining universal stress responses, were associated, among others, with responses to drought, heat, and oxidative stress. In addition, changes specific to the size of the flag leaf blade were found. Our study allowed us to identify sets of genes assigned to various processes underlying the response to drought and heat, including photosynthesis, the abscisic acid pathway, and lipid transport. Genes encoding LEA proteins, including dehydrins and heat shock proteins, were especially induced by stress treatments. Some association between genetic composition and flag leaf size was confirmed. However, there was no general coincidence between SNP polymorphism of genotypes and differential expression of genes induced by stress factors. This research provided novel insight into the molecular mechanisms of barley flag leaf that determine drought and heat response, as well as their co-occurrence.

8.
PLoS One ; 15(2): e0222375, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32017768

RESUMO

Fusarium head blight (FHB) is a devastating disease occurring in small grain cereals worldwide. The disease results in the reduction of grain yield, and mycotoxins accumulated in grain are also harmful to both humans and animals. It has been reported that response to pathogen infection may be associated with the morphological and developmental traits of the host plant, e.g. earliness and plant height. Despite many studies, effective markers for selection of barley genotypes with increased resistance to FHB have not been developed. In the present study, we investigated 100 recombinant inbred lines (RIL) of spring barley. Plants were examined in field conditions (three locations) in a completely randomized design with three replications. Barley genotypes were artificially infected with spores of Fusarium culmorum before heading. Apart from the main phenotypic traits (plant height, spike characteristic, grain yield), infected kernels were visually scored and the content of deoxynivalenol (DON) mycotoxin was investigated. A set of 70 Quantitative Trait Loci (QTLs) were detected through phenotyping of the mapping population in field conditions and genotyping using a barley Ilumina 9K iSelect platform. Six loci were detected for the FHB index on chromosomes 2H, 3H, 5H, and 7H. A region on the short arm of chromosome 2H was detected in which many QTLs associated with FHB- and yield-related traits were found. This study confirms that agromorphological traits are tightly related to FHB and should be taken into consideration when breeding barley plants for FHB resistance.


Assuntos
Fusarium/genética , Hordeum/microbiologia , Doenças das Plantas/genética , Locos de Características Quantitativas , Cromossomos de Plantas , Fusariose/genética , Fusarium/patogenicidade , Genótipo , Micotoxinas/análise , Doenças das Plantas/microbiologia
9.
Plant Physiol Biochem ; 141: 215-224, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31181509

RESUMO

Plants are usually exposed to several types of abiotic stress in regular field conditions. The lipid profile of barley homozygous lines exposed to drought, heat, salinity, and their combinations, was investigated in the present study. Free fatty acids, free sterols, and diacylglycerols were the most abundant classes (∼8.0% of plant material). The genetic background significantly impacted the lipid composition rather than the treatments, and diacylglycerols were the only lipid class affected by salinity (1.84 mg/100 mg plant tissue; ∼33% reduction). However, the genotype × treatment interaction analysis revealed that the lipid and sterol compositions depended on both genotype and environment. Our results suggest that inborn stress tolerance in barley is manifested by enhanced accumulation of most lipids, mainly sterols, especially in heat/drought-stressed plants. In addition, expression of the LTP2 gene may be indirectly involved in the abiotic stress reaction of barley by mediating intracellular transport of some lipid classes.


Assuntos
Hordeum/química , Lipídeos/química , Folhas de Planta/química , Esteróis/química , Estresse Fisiológico , Adaptação Fisiológica , Diglicerídeos/química , Secas , Ácidos Graxos não Esterificados/química , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Genótipo , Hordeum/genética , Temperatura Alta , Fenótipo , Fitosteróis/química , Folhas de Planta/genética , Reprodutibilidade dos Testes , Salinidade
10.
J Appl Genet ; 58(1): 23-35, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27447461

RESUMO

High-yielding capacity of the modern barley varieties is mostly dependent on the sources of semi-dwarfness associated with the sdw1/denso locus. The objective of the study was to identify quantitative trait loci (QTLs) associated with the plant height and yield potential of barley recombinant inbred lines (RILs) grown under various soil moisture regimes. The plant material was developed from a hybrid between the Maresi (European cv.) and CamB (Syrian cv.). A total of 103 QTLs affecting analysed traits were detected and 36 of them showed stable effects over environments. In total, ten QTLs were found to be significant only under water shortage conditions. Nine QTLs affecting the length of main stem were detected on 2H-6H chromosomes. In four of the detected QTLs, alleles contributed by Maresi had negative effects on that trait, the most significant being the QLSt-3H.1-1 in the 3H.1 linkage group. The close linkage between QTLs identified around the sdw1/denso locus, with positive alleles contributed by Maresi, indicates that the semi-dwarf cv. Maresi could serve as a donor of favourable traits resulting in grain yield improvement, also under water scarcity. Molecular analyses revealed that the Syrian cv. also contributed alleles which increased the yield potential. Available barley resources of genomic annotations were employed to the biological interpretation of detected QTLs. This approach revealed 26 over-represented Gene Ontology terms. In the projected support intervals of QGWSl-5H.3-2 and QLSt-5H.3 on the chromosome 5H, four genes annotated to 'response to stress' were found. It suggests that these QTL-regions may be involved in a response of plant to a wide range of environmental disturbances.


Assuntos
Secas , Hordeum/crescimento & desenvolvimento , Hordeum/genética , Locos de Características Quantitativas , Alelos , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA