Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 36: 309-338, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29677470

RESUMO

The complement system is an evolutionarily ancient key component of innate immunity required for the detection and removal of invading pathogens. It was discovered more than 100 years ago and was originally defined as a liver-derived, blood-circulating sentinel system that classically mediates the opsonization and lytic killing of dangerous microbes and the initiation of the general inflammatory reaction. More recently, complement has also emerged as a critical player in adaptive immunity via its ability to instruct both B and T cell responses. In particular, work on the impact of complement on T cell responses led to the surprising discoveries that the complement system also functions within cells and is involved in regulating basic cellular processes, predominantly those of metabolic nature. Here, we review current knowledge about complement's role in T cell biology, with a focus on the novel intracellular and noncanonical activities of this ancient system.


Assuntos
Proteínas do Sistema Complemento/imunologia , Imunomodulação , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunidade Adaptativa , Animais , Autoimunidade , Linfócitos B/imunologia , Linfócitos B/metabolismo , Ativação do Complemento/imunologia , Metabolismo Energético , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Celular , Proteína Cofatora de Membrana/metabolismo , Células Th1/imunologia , Células Th1/metabolismo
2.
Cell ; 186(13): 2802-2822.e22, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37220746

RESUMO

Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.


Assuntos
Antifúngicos , Candidíase , Animais , Camundongos , Complemento C5/metabolismo , Fagócitos/metabolismo
3.
Nat Immunol ; 23(1): 62-74, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34764490

RESUMO

The molecular mechanisms governing orderly shutdown and retraction of CD4+ type 1 helper T (TH1) cell responses remain poorly understood. Here we show that complement triggers contraction of TH1 responses by inducing intrinsic expression of the vitamin D (VitD) receptor and the VitD-activating enzyme CYP27B1, permitting T cells to both activate and respond to VitD. VitD then initiated the transition from pro-inflammatory interferon-γ+ TH1 cells to suppressive interleukin-10+ cells. This process was primed by dynamic changes in the epigenetic landscape of CD4+ T cells, generating super-enhancers and recruiting several transcription factors, notably c-JUN, STAT3 and BACH2, which together with VitD receptor shaped the transcriptional response to VitD. Accordingly, VitD did not induce interleukin-10 expression in cells with dysfunctional BACH2 or STAT3. Bronchoalveolar lavage fluid CD4+ T cells of patients with COVID-19 were TH1-skewed and showed de-repression of genes downregulated by VitD, from either lack of substrate (VitD deficiency) and/or abnormal regulation of this system.


Assuntos
Interferon gama/imunologia , Interleucina-10/imunologia , SARS-CoV-2/imunologia , Células Th1/imunologia , Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Líquido da Lavagem Broncoalveolar/citologia , COVID-19/imunologia , COVID-19/patologia , Complemento C3a/imunologia , Complemento C3b/imunologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ativação Linfocitária/imunologia , Receptores de Calcitriol/metabolismo , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Transcrição Gênica/genética
4.
Annu Rev Immunol ; 28: 131-55, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19947883

RESUMO

Complement is an innate immune system that is a first line of defense against pathogens and facilitates elimination of apoptotic and injured cells. During complement activation, the complement convertases are assembled on target surfaces and initiate their proteolytic activities, a process that marks targets for phagocytosis and/or lysis. The complement alternative activation pathway has been implicated in a number of autoimmune conditions including arthritis and age-related macular degeneration. Properdin, a plasma component that is also released by activated neutrophils, is critical in the stabilization of alternative pathway convertases. Recently, it has been shown that properdin is also a pattern-recognition molecule that binds to certain microbial surfaces, apoptotic cells, and necrotic cells. Once bound to a surface, properdin can direct convertase formation and target uptake. New studies are now focusing on a role for properdin in inflammatory and autoimmune diseases. This review examines the new properdin findings and their implications.


Assuntos
Properdina/imunologia , Animais , Doenças Autoimunes/imunologia , Ativação do Complemento , Proteínas do Sistema Complemento/imunologia , Humanos , Inflamação/imunologia , Neutrófilos/imunologia , Properdina/química
5.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499656

RESUMO

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Assuntos
Aterosclerose , Complemento C3 , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Inflamação , Macrófagos/metabolismo
6.
Immunity ; 56(9): 2036-2053.e12, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572656

RESUMO

Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies.


Assuntos
Arginase , Influenza Humana , Animais , Humanos , Camundongos , Arginase/genética , Arginase/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Glutamina , Cinética , Pulmão/metabolismo , Mamíferos
7.
Nat Immunol ; 19(12): 1403-1414, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397350

RESUMO

Repair of tissue damaged during inflammatory processes is key to the return of local homeostasis and restoration of epithelial integrity. Here we describe CD161+ regulatory T (Treg) cells as a distinct, highly suppressive population of Treg cells that mediate wound healing. These Treg cells were enriched in intestinal lamina propria, particularly in Crohn's disease. CD161+ Treg cells had an all-trans retinoic acid (ATRA)-regulated gene signature, and CD161 expression on Treg cells was induced by ATRA, which directly regulated the CD161 gene. CD161 was co-stimulatory, and ligation with the T cell antigen receptor induced cytokines that accelerated the wound healing of intestinal epithelial cells. We identified a transcription-factor network, including BACH2, RORγt, FOSL2, AP-1 and RUNX1, that controlled expression of the wound-healing program, and found a CD161+ Treg cell signature in Crohn's disease mucosa associated with reduced inflammation. These findings identify CD161+ Treg cells as a population involved in controlling the balance between inflammation and epithelial barrier healing in the gut.


Assuntos
Mucosa Intestinal/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Tretinoína/imunologia , Cicatrização/imunologia , Doença de Crohn/imunologia , Humanos
8.
Immunity ; 54(5): 847-850, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979581

RESUMO

The molecular mechanisms explaining why relapses of inflammatory arthritis occur at previously affected sites are unknown. In this issue of Immunity, Friscic et al. propose that local fibroblasts perpetuate inflammation after priming through cell-intrinsic complement C3, which reprograms their bioenergetics and activates the inflammasome.


Assuntos
Artrite , Fibroblastos , Humanos , Inflamassomos , Inflamação
9.
Immunity ; 52(3): 513-527.e8, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187519

RESUMO

Intrinsic complement C3 activity is integral to human T helper type 1 (Th1) and cytotoxic T cell responses. Increased or decreased intracellular C3 results in autoimmunity and infections, respectively. The mechanisms regulating intracellular C3 expression remain undefined. We identified complement, including C3, as among the most significantly enriched biological pathway in tissue-occupying cells. We generated C3-reporter mice and confirmed that C3 expression was a defining feature of tissue-immune cells, including T cells and monocytes, occurred during transendothelial diapedesis, and depended on integrin lymphocyte-function-associated antigen 1 (LFA-1) signals. Immune cells from patients with leukocyte adhesion deficiency type 1 (LAD-1) had reduced C3 transcripts and diminished effector activities, which could be rescued proportionally by intracellular C3 provision. Conversely, increased C3 expression by T cells from arthritis patients correlated with disease severity. Our study defines integrins as key controllers of intracellular complement, demonstrates that perturbations in the LFA-1-C3-axis contribute to primary immunodeficiency, and identifies intracellular C3 as biomarker of severity in autoimmunity.


Assuntos
Complemento C3/imunologia , Integrinas/imunologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Linfócitos/imunologia , Monócitos/imunologia , Migração Transendotelial e Transepitelial/imunologia , Adulto , Idoso , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Criança , Pré-Escolar , Complemento C3/genética , Complemento C3/metabolismo , Feminino , Humanos , Integrinas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Linfócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/metabolismo , Transdução de Sinais/imunologia
10.
Trends Immunol ; 45(4): 228-230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538487

RESUMO

Complement, traditionally perceived as a liver-derived and plasma-operative guardian against bloodborne pathogens, is increasingly recognized as a local and central player in tissue immunity. Two recent studies, by Xu et al. and Wu et al., validate this concept in the mouse gut, where extrahepatic, intestine-produced, and/or operative C3 protects against enteric infections.


Assuntos
Complemento C3 , Fígado , Animais , Camundongos
11.
Lancet ; 403(10424): 392-405, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-37979593

RESUMO

The complement system is recognised as a protector against blood-borne pathogens and a controller of immune system and tissue homoeostasis. However, dysregulated complement activity is associated with unwanted or non-resolving immune responses and inflammation, which induce or exacerbate the pathogenesis of a broad range of inflammatory and autoimmune diseases. Although the merit of targeting complement clinically has long been acknowledged, the overall complement drug approval rate has been modest. However, the success of the humanised anti-C5 antibody eculizumab in effectively treating paroxysmal nocturnal haemoglobinuria and atypical haemolytic syndrome has revitalised efforts to target complement therapeutically. Increased understanding of complement biology has led to the identification of novel targets for drug development that, in combination with advances in drug discovery and development technologies, has resulted in a surge of interest in bringing new complement therapeutics into clinical use. The rising number of approved drugs still almost exclusively target rare diseases, but the substantial pipeline of up-and-coming treatment options will possibly provide opportunities to also expand the clinical targeting of complement to common diseases.


Assuntos
Doenças Autoimunes , Hemoglobinúria Paroxística , Humanos , Inativadores do Complemento/farmacologia , Inativadores do Complemento/uso terapêutico , Proteínas do Sistema Complemento/fisiologia , Hemoglobinúria Paroxística/tratamento farmacológico , Descoberta de Drogas
12.
Trends Immunol ; 43(11): 886-900, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36216719

RESUMO

Caloric overconsumption in vertebrates promotes adipose and liver fat accumulation while perturbing the gut microbiome. This triad triggers pattern recognition receptor (PRR)-mediated immune cell signaling and sterile inflammation. Moreover, immune system activation perpetuates metabolic consequences, including the progression of nonalcoholic fatty liver disease (NAFLD) to nonalcoholic hepatic steatohepatitis (NASH). Recent findings show that sensing of nutrient overabundance disrupts the activity and homeostasis of the central cellular energy-generating organelle, the mitochondrion. In parallel, whether caloric excess-initiated PRR signaling and mitochondrial perturbations are coordinated to amplify this inflammatory process in NASH progression remains in question. We hypothesize that altered mitochondrial function, classic PRR signaling, and complement activation in response to nutrient overload together play an integrated role across the immune cell landscape, leading to liver inflammation and NASH progression.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado , Inflamação , Transdução de Sinais , Mitocôndrias/metabolismo , Nutrientes
13.
Immunity ; 45(2): 240-54, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27533012

RESUMO

Complement is well appreciated as a critical arm of innate immunity. It is required for the removal of invading pathogens and works by directly destroying them through the activation of innate and adaptive immune cells. However, complement activation and function is not confined to the extracellular space but also occurs within cells. Recent work indicates that complement activation regulates key metabolic pathways and thus can impact fundamental cellular processes, such as survival, proliferation, and autophagy. Newly identified functions of complement include a key role in shaping metabolic reprogramming, which underlies T cell effector differentiation, and a role as a nexus for interactions with other effector systems, in particular the inflammasome and Notch transcription-factor networks. This review focuses on the contributions of complement to basic processes of the cell, in particular the integration of complement with cellular metabolism and the potential implications in infection and other disease settings.


Assuntos
Reprogramação Celular , Proteínas do Sistema Complemento/metabolismo , Imunidade Inata , Infecções/imunologia , Linfócitos T/imunologia , Animais , Autofagia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Inflamassomos/metabolismo , Espaço Intracelular , Receptores Notch/metabolismo , Transdução de Sinais
14.
Arterioscler Thromb Vasc Biol ; 44(7): 1512-1522, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38813699

RESUMO

The adaptive immune system plays an important role in the development and progression of atherosclerotic cardiovascular disease. B cells can have both proatherogenic and atheroprotective roles, making treatments aimed at modulating B cells important therapeutic targets. The innate-like B-cell response is generally considered atheroprotective, while the adaptive response is associated with mixed consequences for atherosclerosis. Additionally, interactions of B cells with components of the adaptive and innate immune system, including T cells and complement, also represent key points for therapeutic regulation. In this review, we discuss therapeutic approaches based on B-cell depletion, modulation of B-cell survival, manipulation of both the antibody-dependent and antibody-independent B-cell response, and emerging immunization techniques.


Assuntos
Imunidade Adaptativa , Linfócitos B , Doenças Cardiovasculares , Humanos , Linfócitos B/imunologia , Animais , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/terapia , Imunidade Inata , Aterosclerose/imunologia , Aterosclerose/terapia , Sobrevivência Celular
15.
J Immunol ; 210(2): 119-125, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36596217

RESUMO

The complement field has recently experienced a strong resurgence of interest because of the unexpected discovery of new complement functions extending complement's role beyond immunity and pathogen clearance, a growing list of diseases in which complement plays a role, and the proliferation of complement therapeutics. Importantly, although the majority of complement components in the circulation are generated by the liver and activated extracellularly, complement activation unexpectedly also occurs intracellularly across a broad range of cells. Such cell-autonomous complement activation can engage intracellular complement receptors, which then drive noncanonical cell-specific effector functions. Thus, much remains to be discovered about complement biology. In this brief review, we focus on novel noncanonical activities of complement in its "classic areas of operation" (kidney and brain biology, infection, and autoimmunity), with an outlook on the next generation of complement-targeted therapeutics.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento
16.
Eur J Immunol ; 53(12): e2250042, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37120820

RESUMO

Recent rapid progress in key technological advances, including the broader accessibility of single-cell "omic" approaches, have allowed immunologists to gain important novel insights into the contributions of individual immune cells in protective immunity and immunopathologies. These insights also taught us that there is still much to uncover about the (cellular) networks underlying immune responses. For example, in the last decade, studies on a key component of innate immunity, the complement system, have defined intracellularly active complement (the complosome) as a key orchestrator of normal cell physiology. This added an unexpected facet to the biology of complement, which was long considered fully explored. Here, we will summarize succinctly the known activation modes and functions of the complosome and provide a perspective on the origins of intracellular complement. We will also make a case for extending assessments of the complotype, the individual inherited landscape of common variants in complement genes, to the complosome, and for reassessing patients with known serum complement deficiencies for complosome perturbations. Finally, we will discuss where we see current opportunities and hurdles for dissecting the compartmentalization of complement activities toward a better understanding of their contributions to cellular function in health and disease.


Assuntos
Proteínas do Sistema Complemento , Imunidade Inata , Humanos , Ativação do Complemento
17.
Nat Immunol ; 13(12): 1213-21, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23086448

RESUMO

CD46 is a complement regulator with important roles related to the immune response. CD46 functions as a pathogen receptor and is a potent costimulator for the induction of interferon-γ (IFN-γ)-secreting effector T helper type 1 (T(H)1) cells and their subsequent switch into interleukin 10 (IL-10)-producing regulatory T cells. Here we identified the Notch family member Jagged1 as a physiological ligand for CD46. Furthermore, we found that CD46 regulated the expression of Notch receptors and ligands during T cell activation and that disturbance of the CD46-Notch crosstalk impeded induction of IFN-γ and switching to IL-10. Notably, CD4(+) T cells from CD46-deficient patients and patients with hypomorphic mutations in the gene encoding Jagged1 (Alagille syndrome) failed to mount appropriate T(H)1 responses in vitro and in vivo, which suggested that CD46-Jagged1 crosstalk is responsible for the recurrent infections in subpopulations of these patients.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ativação Linfocitária , Proteína Cofatora de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Células Th1/imunologia , Adulto , Síndrome de Alagille/genética , Síndrome de Alagille/imunologia , Animais , Células Cultivadas , Criança , Pré-Escolar , Humanos , Interferon gama/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Proteína Jagged-1 , Camundongos , Camundongos SCID , Camundongos Transgênicos , Interferência de RNA , RNA Interferente Pequeno , Proteínas Serrate-Jagged , Células Th1/metabolismo , alfa Catenina/genética
18.
Trends Immunol ; 42(8): 706-722, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34266767

RESUMO

The integrin LFA-1 is crucial for T cell entry into mammalian lymph nodes and tissues, and for promoting interactions with antigen-presenting cells (APCs). However, it is increasingly evident that LFA-1 has additional key roles beyond the mere support of adhesion between T cells, the endothelium, and/or APCs. These include roles in homotypic T cell-T cell (T-T) communication, the induction of intracellular complement activity underlying Th1 effector cell polarization, and the support of long-lasting T cell memory. Here, we briefly summarize current knowledge of LFA-1 biology, discuss novel cytoskeletal regulators of LFA-1 functions, and review new aspects of LFA-1 mechanobiology that are relevant to its function in immunological synapses and in specific pathologies arising from LFA-1 dysregulation.


Assuntos
Molécula 1 de Adesão Intercelular , Antígeno-1 Associado à Função Linfocitária , Animais , Células Apresentadoras de Antígenos , Diferenciação Celular , Células Th1
19.
Immunity ; 42(6): 1033-47, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26084023

RESUMO

Expansion and acquisition of Th1 cell effector function requires metabolic reprogramming; however, the signals instructing these adaptations remain poorly defined. Here we found that in activated human T cells, autocrine stimulation of the complement receptor CD46, and specifically its intracellular domain CYT-1, was required for induction of the amino acid (AA) transporter LAT1 and enhanced expression of the glucose transporter GLUT1. Furthermore, CD46 activation simultaneously drove expression of LAMTOR5, which mediated assembly of the AA-sensing Ragulator-Rag-mTORC1 complex and increased glycolysis and oxidative phosphorylation (OXPHOS), required for cytokine production. T cells from CD46-deficient patients, characterized by defective Th1 cell induction, failed to upregulate the molecular components of this metabolic program as well as glycolysis and OXPHOS, but IFN-γ production could be reinstated by retrovirus-mediated CD46-CYT-1 expression. These data establish a critical link between the complement system and immunometabolic adaptations driving human CD4(+) T cell effector function.


Assuntos
Proteínas do Sistema Complemento/imunologia , Síndrome Hemolítico-Urêmica/imunologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Proteína Cofatora de Membrana/metabolismo , Células Th1/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/imunologia , Células Cultivadas , Reprogramação Celular/imunologia , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Proteínas de Homeodomínio/metabolismo , Humanos , Imunidade Celular/genética , Interferon gama/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína Cofatora de Membrana/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Neuropeptídeos/metabolismo , Fosforilação Oxidativa , RNA Interferente Pequeno/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
20.
Immunol Rev ; 295(1): 68-81, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32166778

RESUMO

The complement system represents one of the evolutionary oldest arms of our immune system and is commonly recognized as a liver-derived and serum-active system critical for providing protection against invading pathogens. Recent unexpected findings, however, have defined novel and rather "uncommon" locations and activities of complement. Specifically, the discovery of an intracellularly active complement system-the complosome-and its key role in the regulation of cell metabolic pathways that underly normal human T cell responses have taught us that there is still much to be discovered about this system. Here, we summarize the current knowledge about the emerging functions of the complosome in T cell metabolism. We further place complosome activities among the non-canonical roles of other intracellular innate danger sensing systems and argue that a "location-centric" view of complement evolution could logically justify its close connection with the regulation of basic cell physiology.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Metabolismo Energético , Ativação Linfocitária , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Suscetibilidade a Doenças , Homeostase , Humanos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA