Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Environ Sci Technol ; 55(5): 3362-3367, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33559471

RESUMO

Approximately 95% of the anesthetic gas administered to a patient is exhaled and ultimately released into the atmosphere. Most anesthetic gases have high global warming potential and so this approach adds significantly to the global greenhouse gas footprint. In this work, we develop a feasible means to capture such an anesthetic gas (sevoflurane) before it is released to the hospital scavenging system so that it is retained within the anesthetic circuit. Sevoflurane is retained using a microporous 1,2-bis(triethoxysilyl)ethane (BTESE) membrane prepared by a sol-gel method. The use of a ceramic membrane facilitates sanitization at high temperatures. A rapid thermal processing (RTP) technique is employed to reduce production time and to create a looser organosilica network, resulting in higher gas permeances, compared with the membrane synthesized from conventional thermal processing. The RTP membrane shows a slight decline in gas permeance when used with a dry mixture of CO2/N2/sevoflurane. This permeance falls again under 20% relative humidity feed conditions but the CO2/sevoflurane selectivity increases. The membrane performance shows little variation when the relative humidity is further increased. These promising results demonstrate that this microporous BTESE membrane has great potential for the recovery of sevoflurane in an anesthetic application.


Assuntos
Anestésicos Inalatórios , Gases de Efeito Estufa , Éteres Metílicos , Anestésicos Inalatórios/análise , Aquecimento Global , Humanos , Sevoflurano
2.
Langmuir ; 31(22): 6211-9, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25984966

RESUMO

Carbonic anhydrase (CA) is a native enzyme that facilitates the hydration of carbon dioxide into bicarbonate ions. This study reports the fabrication of thin films of active CA enzyme onto a porous membrane substrate using layer-by-layer (LbL) assembly. Deposition of multilayer films consisting of polyelectrolytes and CA was monitored by quartz crystal microgravimetry, while the enzymatic activity was assayed according to the rates of p-nitrophenylacetate (p-NPA) hydrolysis and CO2 hydration. The fabrication of the films onto a nonporous glass substrate showed CO2 hydration rates of 0.52 ± 0.09 µmol cm(-2) min(-1) per layer of bovine CA and 2.6 ± 0.7 µmol cm(-2) min(-1) per layer of a thermostable microbial CA. The fabrication of a multilayer film containing the microbial CA on a porous polypropylene membrane increased the hydration rate to 5.3 ± 0.8 µmol cm(-2) min(-1) per layer of microbial CA. The addition of mesoporous silica nanoparticles as a film layer prior to enzyme adsorption was found to increase the activity on the polypropylene membranes even further to a rate of 19 ± 4 µmol cm(-2) min(-1) per layer of microbial CA. The LbL treatment of these membranes increased the mass transfer resistance of the membrane but decreased the likelihood of membrane pore wetting. These results have potential application in the absorption of carbon dioxide from combustion flue gases into aqueous solvents using gas-liquid membrane contactors.

3.
Langmuir ; 30(29): 8784-90, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25036367

RESUMO

The present study reports the synthesis of spray-coated cross-linked polyelectrolyte multilayer membranes. Membrane cross-linking was performed using alkyne-azide "click" chemistry, where alkyne and azide functional groups were used to modify the poly(acrylic acid) (PAA) and the poly(allylamine) hydrochloride (PAH) polyelectrolytes. The results demonstrate that deposition at lower ionic strength produced smoother and denser membrane structures. Pore size analysis using neutral poly(ethylene glycol) revealed a decrease in the membrane pore size as the degree of cross-linking was increased, resulting in the membrane rejecting divalent CaCl2 at levels of up to 80%, and 50% rejection of monovalent NaCl. When poly(sodium-4-styrenesulfonate) (PSS) was combined with small amounts of cross-linkable PAA, significant flux increases were observed in the multilayer membranes with no observable reduction in ion rejection.

4.
Environ Sci Technol ; 48(9): 5163-70, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24669999

RESUMO

Mineral carbonation is known as one of the safest ways to sequester CO2. Nevertheless, the slow kinetics and low carbonation rates constitute a major barrier for any possible industrial application. To date, no studies have focused on reacting serpentinite with a relatively low partial pressure of CO2 (pCO2) close to flue gas conditions. In this work, finely ground and heat-treated serpentinite [Mg3Si2O5(OH)4] extracted from mining residues was reacted with a 18.2 vol % CO2 gas stream at moderate global pressures to investigate the effect on CO2 solubility and Mg leaching. Serpentinite dissolution rates were also measured to define the rate-limiting step. Successive batches of gas were contacted with the same serpentinite to identify surface-limiting factors using scanning electron microscopy (SEM) analysis. Investigation of the serpentinite carbonation reaction mechanisms under conditions close to a direct flue gas treatment showed that increased dissolution rates could be achieved relative to prior work, with an average Mg dissolution rate of 3.55 × 10(-11) mol cm(-2) s(-1). This study provides another perspective of the feasibility of applying a mineral carbonation process to reduce industrial greenhouse gas (GHG) emissions from large emission sources.


Assuntos
Asbestos Serpentinas/química , Dióxido de Carbono/química , Gases/química , Minerais/química , Água/química , Temperatura Baixa , Temperatura Alta , Microscopia Eletrônica de Varredura , Mineração , Pressão
5.
J Dairy Res ; 81(2): 238-44, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24698480

RESUMO

The aggregation of proteins after heating of calcium-fortified milks has been an ongoing problem in the dairy industry. This undesirable effect restricts the manufacture of calcium rich dairy products. To overcome this problem, a completely new approach in controlling the heat stability of dairy protein solutions, developed in our lab, has been employed. In this approach, high intensity, low frequency ultrasound is applied for a very short duration after a pre-heating step at ⩾70 °C. The ultrasound breaks apart whey/whey and whey/casein aggregates through the process of acoustic cavitation. Protein aggregates do not reform on subsequent post-heating, thereby making the systems heat stable. In this paper, the acid gelation properties of ultrasonicated calcium-enriched skim milks have also been investigated. It is shown that ultrasonication alone does not change the gelation properties significantly whereas a sequence of preheating (72 °C/1 min) followed by ultrasonication leads to decreased gelation times, decreased gel syneresis and increased skim milk viscosity in comparison to heating alone. Overall, ultrasonication has the potential to provide calcium-fortified dairy products with increased heat stability. However, enhanced gelation properties can only be achieved when ultrasonication is completed in conjunction with heating.


Assuntos
Cálcio/administração & dosagem , Alimentos Fortificados , Géis/química , Temperatura Alta , Leite/química , Sonicação , Animais , Cálcio da Dieta/administração & dosagem , Caseínas/química , Estabilidade de Medicamentos , Elasticidade , Manipulação de Alimentos/métodos , Alimentos em Conserva , Concentração de Íons de Hidrogênio , Proteínas do Leite/análise , Proteínas do Leite/química , Tamanho da Partícula , Soluções , Viscosidade , Proteínas do Soro do Leite
6.
Ind Eng Chem Res ; 63(37): 16198-16207, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39319075

RESUMO

Polymers of intrinsic microporosity (PIMs) are a class of promising gas separation materials due to their high membrane permeabilities and reasonable selectivities. When processed into thin film composite (TFC) membranes, their high gas throughput aligns closely with industrial requirements, but they are prone to physical aging and plasticization effects. TFC membranes based on the prototypical PIM-1 and its carboxylated derivative cPIM-1 exhibit temperature-dependent gas permeation behavior, which has not been extensively studied before. In single CO2 permeation tests, measurable physical aging occurred when the temperature was raised to 55 °C within a period of 90 min, and the aging rate accelerated as temperature was raised further. TFC membranes prepared from cPIM-1 exhibited a faster aging rate compared to PIM-1 at the same temperature. The decreased permeance could be at least partially recovered through a 5 day methanol vapor treatment. In mixed gas experiments, all membranes showed decreased permselectivities at elevated temperatures. The plasticization pressure of TFC membranes occurred at around 1 bar of CO2 partial pressure, independent of temperature. Significant plasticization was particularly evident for cPIM-1 TFC membranes under CO2/CH4 conditions with increasing temperature, which resulted in increased gas permeance for both components.

7.
Food Chem ; 457: 140010, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908254

RESUMO

The production of cream cheese from ultrafiltered (UF) milk can reduce acid whey generation but the effect of altered protein and calcium concentration on the physicochemical properties of cream cheese is not well understood. In this study, the effect of skim milk concentration by UF (2.5 and 5 fold) was assessed both with and without calcium reduction using 2% (w/v) cation resin treatment. UF concentration increased the concentration of peptides and free amino acids and led to a more heterogeneous and porous microstructure, resulting in a softer, less viscous and less thermally stable cream cheese. Calcium reduction decreased peptide generation, increased the size of corpuscular structures, decreased porosity and increased thermal stability but did not significantly decrease cheese hardness or viscosity. The study illustrates how protein or calcium concentration, can be used to alter functional properties.


Assuntos
Cálcio , Queijo , Leite , Ultrafiltração , Queijo/análise , Cálcio/química , Animais , Leite/química , Viscosidade , Manipulação de Alimentos
8.
J Chromatogr A ; 1716: 464588, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38217959

RESUMO

Mechanistic modelling is a simulation tool which has been effectively applied in downstream bioprocessing to model resin chromatography. Membrane and fiber chromatography are newer approaches that offer higher rates of mass transfer and consequently higher flow rates and reduced processing times. This review describes the key considerations in the development of mechanistic models for these unit operations. Mass transfer is less complex than in resin columns, but internal housing volumes can make modelling difficult, particularly for laboratory-scale devices. Flow paths are often non-linear and the dead volume is often a larger fraction of the overall volume, which may require more complex hydrodynamic models to capture residence time distributions accurately. In this respect, the combination of computational fluid dynamics with appropriate protein binding models is emerging as an ideal approach.


Assuntos
Cromatografia , Membranas Artificiais , Cromatografia/métodos , Simulação por Computador , Hidrodinâmica
9.
Biotechnol Bioeng ; 110(8): 2096-104, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23335348

RESUMO

The lipid characteristics of microalgae are known to differ between species and change with growth conditions. This work provides a methodology for lipid characterization that enables selection of the optimal strain, cultivation conditions, and processing pathway for commercial biodiesel production from microalgae. Two different microalgal species, Nannochloropsis sp. and Chlorella sp., were cultivated under both nitrogen replete and nitrogen depleted conditions. Lipids were extracted and fractionated into three major classes and quantified gravimetrically. The fatty acid profile of each fraction was analyzed using GC-MS. The resulting quantitative lipid data for each of the cultures is discussed in the context of biodiesel and omega-3 production. This approach illustrates how the growth conditions greatly affect the distribution of fatty acid present in the major lipid classes and therefore the suitability of the lipid extracts for biodiesel and other secondary products.


Assuntos
Biocombustíveis , Chlorella/química , Lipídeos/análise , Estramenópilas/química , Chlorella/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Nitrogênio/metabolismo , Estramenópilas/crescimento & desenvolvimento
10.
J Dairy Res ; 80(2): 138-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23328199

RESUMO

Gelation is a significant operation in dairy processing. Protein gelation can be affected by several factors such as temperature, pH, or enzyme addition. Recently, the use of ultrasonication has been shown to have a significant impact on the formation of whey protein gels. In this work, the effect of ultrasonication on the gelation of casein systems was investigated. Gels were formed by the addition of 7.6 mm Tetra Sodium Pyro Phosphate (TSPP) to 5 wt% micellar casein (MC) solutions. Sonication at 20 KHz and 31 W for up to 30 min changed the surface hydrophobicity of the proteins, whereas surface charge was unaltered. Sonication before the addition of TSPP formed a firm gel with a fine protein network and low syneresis. Conversely, sonication after TSPP addition led to an inconsistent weak-gel-like structure with high syneresis. Gel strength in both cases increased significantly after short sonication times, while the viscoelastic properties were less affected. Overall, the results showed that ultrasonication can have a significant effect on the final gel properties of casein systems.


Assuntos
Caseínas/química , Géis/química , Micelas , Sonicação , Fenômenos Químicos , Difosfatos/administração & dosagem , Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Reologia , Propriedades de Superfície , Viscosidade
11.
ACS Macro Lett ; 12(1): 113-117, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36608265

RESUMO

Physical aging of glassy polymers leads to a decrease in permeability over time when they are used in membranes. This hinders the industrial application of high free volume polymers, such as the archetypal polymer of intrinsic microporosity PIM-1, for membrane gas separation. In thin film composite (TFC) membranes, aging is much more rapid than in thicker self-standing membranes, as rearrangement within the thin active layer is relatively fast. Liquid alcohol treatment, which swells the membrane, is often used in the laboratory to rejuvenate aged self-standing membranes, but this is not easily applied on an industrial scale and is not suitable to refresh TFC membranes because of the risk of membrane delamination. In this work, it is demonstrated that a simple method of storage in an atmosphere of methanol vapor effectively retards physical aging of PIM-1 TFC membranes. The same method can also be utilized to refresh aged PIM-1 TFC membranes, and one-week methanol vapor storage is sufficient to recover most of the original CO2 permeance.

12.
Food Res Int ; 173(Pt 1): 113305, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803619

RESUMO

New processes are needed to produce concentrated milk feedstocks with tailored calcium content, due to the direct link between calcium concentration and final product texture and functionality. Skim milk treatment with cation exchange resin 1% (w/v) or 2% (w/v) prior to ultrafiltration to a volumetric concentration factor (VCF) of 2.5 or 5 successfully decreased the calcium concentration by 20-30% and produced concentrates with solids content at ∼22-24 g 100 g-1 at a VCF of 5. Calcium reduction partially solubilized the casein micelles, increasing the concentration of soluble protein and individual caseins, leading to decreased turbidity but increased protein hydration and hydrophobicity. Decalcification (2% (w/v) resin treatment) reduced thermal stability, significantly decreasing the denaturation temperature of α-lactalbumin and ß-lactoglobulin in the milk by ∼3 °C and ∼1 °C respectively. Filtration was also altered, reducing permeation flux and the gel concentration and increased filtration time. When combined, calcium reduction and filtration altered functional properties including soluble calcium, soluble protein and sedimentable solids, with increased milk protein hydration also contributing to increased viscosity. This study provides a route to produce calcium-reduced milk concentrates with potential for use in retentate-based dairy products with tailored functionality.


Assuntos
Cálcio , Ultrafiltração , Animais , Cálcio/análise , Troca Iônica , Manipulação de Alimentos , Leite/química , Caseínas , Cálcio da Dieta
13.
Food Chem ; 405(Pt B): 134933, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36410214

RESUMO

Mozzarella cheese was industrially frozen (-18 °C), stored for up to six months, tempered at 4 °C for one or three weeks and the structure and functionality compared to cheese stored at 4 °C and cheese aged at 4 °C for four weeks prior to freezing. When combined with ageing or tempering, the slow industrial freezing minimised changes to the protein network as detected by confocal microscopy and arrested proteolysis. Cheese functionality improved with three weeks of tempering, with properties similar to cheese refrigerated for one month, potentially due to increased proteolysis and protein rehydration. Frozen storage induced ß-sheet and ß-turn structures, as detected by S-FTIR microspectroscopy, with longer tempering leading to structural recovery in the cheese. This study indicates the proteolysis and functionality of frozen cheese can be optimised with tempering time. It also provides new insights into heat transfer during the industrial freezing and tempering of cheese.


Assuntos
Queijo , Congelamento , Indústrias , Proteólise
14.
Environ Sci Technol ; 45(11): 4802-7, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21534585

RESUMO

The hydration of CO(2) plays a critical role in carbon capture and geoengineering technologies currently under development to mitigate anthropogenic global warming and in environmental processes such as ocean acidification. Here we reveal that borate catalyzes the conversion of CO(2) to HCO(3)(-) via the same fundamental mechanism as the enzyme carbonic anhydrase, which is responsible for CO(2) hydration in the human body. In this mechanism the tetrahydroxyborate ion, B(OH)(4)(-), is the active form of boron that undergoes direct reaction with CO(2). In addition to being able to accelerate CO(2) hydration in alkaline solvents used for carbon capture, we hypothesize that this mechanism controls CO(2) uptake by certain saline bodies of water, such as Mono Lake (California), where previously inexplicable influx rates of inorganic carbon have created unique chemistry. The new understanding of CO(2) hydration provided here should lead to improved models for the carbon cycle in highly saline bodies of water and to advances in carbon capture and geoengineering technology.


Assuntos
Boratos/química , Dióxido de Carbono/química , Anidrases Carbônicas/metabolismo , Aquecimento Global/prevenção & controle , Água/química
15.
J Dairy Res ; 78(2): 226-32, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21411030

RESUMO

Aqueous solutions of reconstituted whey protein- concentrate (WPC) & isolate (WPI) powders were sonicated at 20 kHz in a batch process for 1-60 min. Sonication at 20 kHz increased the clarity of WPC solutions largely due to the reduction in the size of the suspended insoluble aggregates. The gel strength of these solutions when heated at 80°C for 20 min also increased with sonication, while gelation time and gel syneresis were reduced. These improvements in gel strength were observed across a range of initial pH values, suggesting that the mechanism for gel promotion is different from the well known effects of pH. Examining the microstructure of the whey protein gels indicated a compact network of densely packed whey protein aggregates arising from ultrasound treatment. Comparable changes were not observed with whey protein isolate solutions, which may reflect the absence of larger aggregates in the initial solution or differences in composition.


Assuntos
Proteínas do Leite/química , Sonicação/métodos , Água/química , Pós/química , Temperatura , Proteínas do Soro do Leite
16.
Membranes (Basel) ; 11(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546208

RESUMO

Acid whey is a by-product of cheese and yoghurt manufacture. The protein and lactose within acid whey can be recovered using nanofiltration and electrodialysis, but this leaves a waste stream that is a mixture of salts and lactic acid. To further add value to the acid whey treatment process, the possibility of recovering this lactic acid was investigated using either low energy reverse osmosis membranes or an electrodialysis process. Partial separation between lactic acid and potassium chloride was achieved at low applied pressures and feed pH in the reverse osmosis process, as a greater permeation of potassium chloride was observed under these conditions. Furthermore, lactic acid retention was enhanced by operating at lower temperature. Partial separation between lactic acid and potassium chloride was also achieved in the electrodialysis process. However, the observed losses in lactic acid increased with the addition of sodium chloride to the feed solution. This indicates that the separation becomes more challenging as the complexity of the feed solution increases. Neither process was able to achieve sufficient separation to avoid the use of further purification processes.

17.
ACS Appl Mater Interfaces ; 12(40): 44720-44730, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32941731

RESUMO

A novel membrane structure composed of cross-hatched electrospun nanofibers is developed. We illustrate that this novel structure allows for much higher water permeability when used as a support for reverse osmosis thin-film composite membranes. Reinforcement and lamination of the aligned nanofibers generates mechanically robust structures that retain very high porosity and low tortuosity when applied to high pressure desalination operations. The cross-hatched nanofiber layers support the polyamide active layer firmly and reduce resistance to water flow due to the high porosity, low tortuosity, high mechanical strength, and minimal thickness of the structures. The nanofiber composite membrane gives a water flux significantly greater than when a traditional support layer is used, at 99 ± 5 m-2 h-1 with NaCl rejection of 98.7% at 15.5 bar.

18.
Food Chem ; 325: 126901, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32387956

RESUMO

The effect of thermal treatment (45-95 °C for 30 min) on the structure of almond milk proteins was assessed, as the unfolding and association of these proteins in response to heat is not well understood. Above 55 °C, protein surface hydrophobicity and particle size increased and alpha helical structure decreased, reducing the stability of skim or full fat milk. Fractal protein clusters were observed at 65-75 °C and weakly flocculated gels with a continuous protein network occurred at 85-95 °C, resulting in gels with high water holding capacity and a strength similar to dairy gels. The presence of almond fat increased gel strength but led to a more heterogenous microstructure, which may be improved by homogenisation. Elasticity could also be increased with protein concentration. This study improves our understanding of the heat stability of almond milk proteins and indicates their potential as a gelling ingredient for vegan and vegetarian products.

19.
Food Chem ; 332: 127327, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615380

RESUMO

The effect of variation in acid gel pH during cream cheese production was investigated. The gel microstructure was denser and cheese texture firmer, as the pH decreased from pH 5.0 to pH 4.3, despite the viscoelasticity of these gels remaining similar during heating. Protein hydration and secondary structure appeared to be key factors affecting both cheese microstructure and properties. Proteins within the matrix appeared to swell at pH 5.0, leading to a larger corpuscular structure; greater ß-turn structure was also observed by synchrotron-Fourier transform infrared (S-FTIR) microspectroscopy and the cheese was softer. A decrease in pH led to a denser microstructure with increased aggregated ß-sheet structure and a firmer cheese. The higher whey protein loss at low pH likely contributed to increased cheese hardness. In summary, controlling the pH of acid gel is important, as this parameter affects proteins in the cheese, their secondary structure and the resulting cream cheese.


Assuntos
Queijo/análise , Gorduras/química , Manipulação de Alimentos , Proteínas/química , Reologia , Concentração de Íons de Hidrogênio , Viscosidade
20.
Ultrason Sonochem ; 16(4): 462-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19201242

RESUMO

The effect of sonication on the pasting properties of waxy rice starch solutions (5 wt%) was investigated. It has been found that the functionality of starch granules was significantly influenced by the length of sonication and the solution temperature. A comparison of the pasting behaviour showed that the peak and final viscosities of the starch dispersions sonicated at temperatures near the onset temperature of gelatinisation were lower than those of the non-sonicated dispersions. The particle size measurements showed that the size of the heated and sonicated granules were smaller than that of the heated non-sonicated starch granules. Scanning electron microscopy (SEM) observations showed that the starch granule surface was not affected by sonication, and the size exclusion chromatography did not show any reduction in the size of the starch molecules. Based on these observations, the change in the pasting behaviour is explained in terms of the solubilisation of the swollen starch granules and starch aggregates induced by sonication.


Assuntos
Oryza/química , Sonicação , Amido/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Suspensões , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA