Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 239(8): e31302, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38775127

RESUMO

Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24). A limitation of the CTV and most other viruses, including adenoviruses, is an inability to deliver systemically to treat brain tumors because of the BBB, nonspecific virus trapping, and immune clearance. These obstacles to effective viral therapy of brain cancer have now been overcome using focused ultrasound with a dual microbubble treatment, the focused ultrasound-double microbubble (FUS-DMB) approach. Proof-of-principle is now provided indicating that the BBB can be safely and transiently opened, and the CTV can then be administered in a second set of complement-treated microbubbles and released in the brain using focused ultrasound. Moreover, the FUS-DMB can be used to deliver the CTV multiple times in animals with glioblastoma  growing in their brain thereby resulting in a further enhancement in survival. This strategy permits efficient therapy of primary and secondary brain tumors enhancing animal survival without promoting harmful toxic or behavioral side effects. Additionally, when combined with a standard of care therapy, Temozolomide, a further increase in survival is achieved. The FUS-DMB approach with the CTV highlights a noninvasive strategy to treat brain cancers without surgery. This innovative delivery scheme combined with the therapeutic efficacy of the CTV provides a novel potential translational therapeutic approach for brain cancers.


Assuntos
Adenoviridae , Barreira Hematoencefálica , Neoplasias Encefálicas , Animais , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/virologia , Humanos , Adenoviridae/genética , Interleucinas/genética , Linhagem Celular Tumoral , Microbolhas/uso terapêutico , Camundongos , Glioblastoma/terapia , Glioblastoma/virologia , Glioblastoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Terapia Viral Oncolítica/métodos , Vetores Genéticos/administração & dosagem , Temozolomida/uso terapêutico , Camundongos Nus
2.
Exp Neurol ; 382: 114963, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303845

RESUMO

Traumatic brain injury (TBI) is a prevalent problem with survivors suffering from chronic cognitive impairments. Following TBI there is a series of neuropathological changes including neurogenesis. It is well established that neurogenesis in the dentate gyrus (DG) of the hippocampus is important for hippocampal dependent learning and memory functions. Following TBI, injury-enhanced hippocampal neurogenesis is believed to contribute to post-injury cognitive recovery. Behavioral function is connected to synaptic plasticity and neuronal dendritic branching is critical for successful synapse formation. To ascertain the functional contribution of injury-induced DG new neurons in post-TBI cognitive recovery, it is necessary to study their dendritic morphological development and the molecular mechanisms controlling this process. Utilizing transgenic mice with tamoxifen-induced GFP expression and Notch1 knock-out in nestin+ neural stem cells, this study examined dendritic morphology, the role of Notch1 in regulating dendritic complexity of injury-induced DG new neurons, and their association to post-TBI cognitive recovery. We found that at 8 weeks after a moderate TBI, injury-induced DG new neurons in the injured control mice displayed a similar dendritic morphology as the cells in non-injured mice accompanied with cognitive recovery. In comparison, in Notch1 conditional knock-out mice, DG new neurons in the injured mice had a significant reduction in dendritic morphological development including dendritic arbors, volume span, and number of branches in comparison to the cells in non-injured mice concomitant with persistent cognitive dysfunction. The results of this study confirm the importance of post-injury generated new neurons in cognitive recovery following TBI and the role of Notch1 in regulating their maturation process.

3.
J Med Chem ; 63(20): 11819-11830, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32945676

RESUMO

Mitochondrial dysfunction has been recognized as an essential contributor to many human diseases including neurodegenerative disorders. However, the exact pathological role of mitochondrial dysfunction, especially in mitochondrial reactive oxygen species-associated oxidative stress, remains elusive, partially due to the lack of chemical probes with well-defined mechanisms of action. Herein, we describe the characterization and discovery of a rationally designed small molecule ZCM-I-1 as a selective modulator of the production of reactive oxygen species from mitochondrial complex I that does not alter mitochondrial membrane potential and bioenergetics. Chemical biology studies employing photoaffinity probes derived from ZCM-I-1 demonstrated its novel mechanism of action of modulating complex I via interactions with the flavin mononucleotide site, proximal in the reaction pathway within complex I.


Assuntos
Descoberta de Drogas , Complexo I de Transporte de Elétrons/metabolismo , Indóis/farmacologia , Mitocôndrias/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Camundongos , Mitocôndrias/metabolismo , Modelos Moleculares , Estrutura Molecular , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA