Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurochem Res ; 47(7): 1816-1829, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35380400

RESUMO

The medicinal plant Mucuna pruriens (Fabaceae) is widely known for its anti-oxidative and anti-inflammatory properties. It is a well-established drug in Ayurveda and has been widely used for the treatment of neurological disorders and male infertility for ages. The seeds of the plant have potent medicinal value and its extract has been tested in different models of neurodegenerative diseases, especially Parkinson's disease (PD). Apart from PD, Mucuna pruriens is now being studied in models of other nervous systems disorders such as Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS) and stroke because of its neuroprotective importance. This review briefly discusses the pathogenesis of PD, AD, ALS and stroke. It aims to summarize the medicinal importance of Mucuna pruriens in treatment of these diseases, and put forward the potential targets where Mucuna pruriens can act for therapeutic interventions. In this review, the effect of Mucuna pruriens on ameliorating the neurodegeneration evident in PD, AD, ALS and stroke is briefly discussed. The potential targets for neuroprotection by the plant are delineated, which can be studied further to validate the hypothesis regarding the use of Mucuna pruriens for the treatment of these diseases.


Assuntos
Esclerose Lateral Amiotrófica , Mucuna , Doenças Neurodegenerativas , Doença de Parkinson , Acidente Vascular Cerebral , Esclerose Lateral Amiotrófica/tratamento farmacológico , Humanos , Masculino , Doenças Neurodegenerativas/tratamento farmacológico , Neuroproteção , Doença de Parkinson/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Sementes , Acidente Vascular Cerebral/tratamento farmacológico
2.
Neurochem Res ; 46(7): 1618-1626, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33900517

RESUMO

In the recent past, huge emphasis has been given to the epigenetic alterations of the genes responsible for the cause of neurological disorders. Earlier, the scientists believed somatic changes and modifications in the genetic makeup of DNA to be the main cause of the neurodegenerative diseases. With the increase in understanding of the neural network and associated diseases, it was observed that alterations in the gene expression were not always originated by the change in the genetic sequence. For this reason, extensive research has been conducted to understand the role of epigenetics in the pathophysiology of several neurological disorders including Alzheimer's disease, Parkinson's disease and, Huntington's disease. In a healthy person, the epigenetic modifications play a crucial role in maintaining the homeostasis of a cell by either up-regulating or down-regulating the genes. Therefore, improved understanding of these modifications may provide better insight about the diseases and may serve as potential therapeutic targets for their treatment. The present review describes various epigenetic modifications involved in the pathology of Parkinson's Disease (PD) backed by multiple researches carried out to study the gene expression regulation related to the epigenetic alterations. Additionally, we will briefly go through the current scenario about the various treatment therapies including small molecules and multiple phytochemicals potent enough to reverse these alterations and the future directions for a better management of PD.


Assuntos
Epigênese Genética/fisiologia , Expressão Gênica/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Animais , DNA/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/fisiologia , Epigênese Genética/efeitos dos fármacos , Humanos , Doença de Parkinson/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/fisiologia , RNA Longo não Codificante/metabolismo
3.
Mol Neurobiol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587698

RESUMO

In view of the increasing risk of neurodegenerative diseases, epigenetics plays a fundamental role in the field of neuroscience. Several modifications have been studied including DNA methylation, histone acetylation, histone phosphorylation, etc. Histone acetylation and deacetylation regulate gene expression, and the regular activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs) provides regulatory stages for gene expression and cell cycle. Imbalanced homeostasis in these enzymes causes a detrimental effect on neurophysiological function. Intriguingly, epigenetic remodelling via histone acetylation in certain brain areas has been found to play a key role in the neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. It has been demonstrated that a number of HATs have a role in crucial brain processes such regulating neuronal plasticity and memory formation. The most recent therapeutic methods involve the use of small molecules known as histone deacetylase (HDAC) inhibitors that antagonize HDAC activity thereby increase acetylation levels in order to prevent the loss of HAT function in neurodegenerative disorders. The target specificity of the HDAC inhibitors now in use raises concerns about their applicability, despite the fact that this strategy has demonstrated promising therapeutic outcomes. The aim of this review is to summarize the cross-linking between histone modification and its regulation in the pathogenesis of neurological disorders. Furthermore, these findings also support the notion of new pharmacotherapies that target particular areas of the brain using histone deacetylase inhibitors.

4.
Sci Rep ; 13(1): 2452, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774383

RESUMO

Major pathological features of Parkinson's disease (PD) include increase in oxidative stress leading to the aggregation of α-synuclein, mitochondrial dysfunction and apoptosis of dopaminergic neurons. In addition, downregulation of the expression of neurotrophic factors like-Brain Derived Neurotrophic Factor (BDNF) is also involved in PD progression. There has been a lot of interest in trophic factor-based neuroprotective medicines over the past few decades to treat PD symptoms. Rotenone, an insecticide, inhibits the mitochondrial complex I causing overproduction of ROS, oxidative stress, and aggregation of α-synuclein. It has been shown that BDNF and Tropomyosin receptor kinase B (TrkB) interaction initiates the regulation of neuronal cell development and differentiation by the serine/threonine protein kinases like Akt and GSK-3ß. Additionally, Transcription factor CREB (cAMP Response Element-binding protein) also determines the gene expression of BDNF. The homeostasis of these signalling cascades is compromised with the progression of PD. Therefore, maintaining the equilibrium of these signalling cascades will delay the onset of PD. Oleuropein (OLE), a polyphenolic compound present in olive leaves has been documented to cross blood brain barrier and shows potent antioxidative property. In the present study, the dose of 8, 16 and 32 mg/kg body weight (bwt) OLE was taken for dose standardisation. The optimised doses of 16 and 32 mg/kg bwt was found to be neuroprotective in Rotenone induced PD mouse model. OLE improves motor impairment and upregulate CREB regulation along with phosphorylation of Akt and GSK-3ß in PD mouse. In addition, OLE also reduces the mitochondrial dysfunction by activation of enzyme complexes and downregulates the proapoptotic markers in Rotenone intoxicated mouse model. Overall, our study suggests that OLE may be used as a therapeutic agent for treatment of PD by regulating BDNF/CREB/Akt signalling pathway.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Rotenona/toxicidade , Neuroproteção , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , alfa-Sinucleína , Glicogênio Sintase Quinase 3 beta , Neurônios Dopaminérgicos/metabolismo , Fármacos Neuroprotetores/farmacologia
5.
ACS Chem Neurosci ; 14(17): 3077-3087, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37579290

RESUMO

Oxidative stress and mitochondrial dysfunction are leading mechanisms that play a crucial role in the progression of Parkinson's disease (PD). Tinospora cordifolia shows a wide range of biological activities including immunomodulatory, antimicrobial, antioxidant, and anti-inflammatory properties. This study explored the neuroprotective activities of T. cordifolia ethanolic extract (TCE) against Rotenone (ROT)-intoxicated Parkinsonian mice. Four experimental groups of mice were formed: control, ROT (2 mg/kg body wt, subcutaneously), TCE (200 mg/kg body wt, oral) + ROT, and TCE only. Mice were pretreated with TCE for a week and then simultaneously injected with ROT for 35 days. Following ROT-intoxication, motor activities, antioxidative potential, and mitochondrial dysfunction were analyzed. Decrease in the activity of the mitochondrial electron transport chain (mETC) complex, loss of mitochondrial membrane potential (Ψm), increase in Bax/Bcl-2 (B-cell lymphoma 2) ratio, and caspase-3 expression are observed in the ROT-intoxicated mice group. Our results further showed ROT-induced reactive oxygen species (ROS)-mediated alpha-synuclein (α-syn) accumulation and mitochondrial dysfunction. However, pre- and cotreatment with TCE along with ROT-intoxication significantly reduced α-syn aggregation and improved mitochondrial functioning in cells by altering mitochondrial potential and increasing mETC activity. TCE also decreases the Bax/Bcl-2 ratio and also the expression of caspase-3, thus reducing apoptosis of the cell. Altogether, TCE is effective in protecting neurons from rotenone-induced cytotoxicity in the Parkinsonian mouse model by modulating oxidative stress, ultimately reducing mitochondrial dysfunction and cell death.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Tinospora , Camundongos , Animais , Doença de Parkinson/metabolismo , Rotenona/farmacologia , Fármacos Neuroprotetores/farmacologia , Tinospora/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Mitocôndrias/metabolismo
6.
ACS Chem Neurosci ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989171

RESUMO

Autophagy mediates self-digestion of abnormally aggregated proteins and organelles present in the cytoplasm. This mechanism may prove to be neuroprotective against Parkinson's disease (PD) by clearing misfolded α-synuclein (α-syn) aggregates from dopaminergic neurons. p62, an adaptor protein acts as a selective substrate for autophagy and regulates the formation as well as the degradation of protein aggregates. p62 sequesters keap1 freeing Nrf2 and consequently activating the transcription of its target genes. In the present study, we aimed to investigate the anti-parkinsonian activity of curcumin targeting primarily activation of autophagy via the Nrf2-Keap1 pathway. The mice were subcutaneously injected with rotenone (2.5 mg/kg bodyweight) and co-treated with oral administration of curcumin (80 mg/kg bodyweight) for 35 days. Following completion of dosing, motor activities, anti-oxidative potential, mitochondrial dysfunction, and various protein expressions, including Nrf2, Keap1, p62, LC3, Bcl2, Bax, and caspase 3, were assessed. The results revealed that curcumin restored the motor coordination and anti-oxidative activity while improving the mitochondrial functioning in PD mice. Autophagy was evaluated by the change in the expression of autophagic markers, p62 and LC3-II. Reduced p62 and LC3-II expressions in the rotenone mouse model of PD confirmed the compromised autophagy pathway, consequently increasing the aggregation of misfolded protein α-syn. Whereas, curcumin treatment-enhanced autophagy-mediated clearance of misfolded α-syn proteins by increasing the LC3-II expression and blocked apoptotic cascade. Curcumin administration upregulated the Nrf2 expression and normalized the Nrf2-Keap1 pathway, which justifies the improved anti-oxidative activity. Therefore, the findings reveal that curcumin is a Nrf2-inducer and is endowed with neuroprotective potential, which may prove to be a potential candidate for the anti-Parkinson's disease treatment therapy.

7.
Appl Biochem Biotechnol ; 194(7): 3296-3319, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35349089

RESUMO

Endophytes either be bacteria, fungi, or actinomycetes colonize inside the tissue of host plants without showing any immediate negative effects on them. Among numerous natural alternative sources, fungal endophytes produce a wide range of structurally diverse bioactive metabolites including anticancer compounds. Considering the production of bioactive compounds in low quantity, genetic and physicochemical modification of the fungal endophytes is performed for the enhanced production of bioactive compounds. Presently, for the treatment of cancer, chemotherapy is majorly used, but the side effects of chemotherapy are of prime concern in clinical practices. Also, the drug-resistant properties of carcinoma cells, lack of cancer cells-specific medicine, and the side effects of drugs are the biggest obstacles in cancer treatment. The interminable requirement of potential drugs has encouraged researchers to seek alternatives to find novel bioactive compounds, and fungal endophytes seem to be a probable target for the discovery of anticancer drugs. The present review focuses a comprehensive literature on the major fungal endophyte-derived bioactive compounds which are presently been used for the management of cancer, biotic factors influencing the production of bioactive compounds and about the challenges in the field of fungal endophyte research.


Assuntos
Antineoplásicos , Endófitos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Bactérias , Endófitos/metabolismo , Fungos/metabolismo , Plantas
8.
PLoS One ; 17(3): e0264673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35298472

RESUMO

Oroxylum indicum (L.) Kurz, a medicinal plant, shows numerous pharmacological properties which may be attributed to the bioactive compounds produced by O. indicum or due to associated endophytes. In the present study, leaf of O. indicum was evaluated for the presence of associated fungal endophytes, and antioxidant and cytotoxic activities of bioactive compounds produced from them. Using culture-dependent approach, eight fungal endophytes belonging to five different genera were identified. Two endophytes Daldinia eschscholtzii and Ectophoma multirostrata have been reported for the first time from the leaf of O. indicum plant. High-performance thin-layer chromatography (HPTLC) of ethyl acetate (EA) extract of isolated fungal endophytes showed a distinct fingerprinting profile in EA extract of Colletotrichum gloeosporioides. Among identified endophytes, EA extract of C. gloeosporioides showed significant antioxidant activity against DPPH free radical, superoxide anion radical, nitric oxide radical and hydroxyl radical with EC50 values of 22.24±1.302 µg/mL, 67.46±0.576 µg/mL, 80.10±0.706 µg/mL and 61.55±1.360 µg/mL, respectively. EA extract of C. gloeosporioides exhibited potential cytotoxicity against HCT116, HeLa and HepG2 cancer cell lines with IC50 values of 76.59 µg/mL, 176.20 µg/mL and 1750.70 µg/mL, respectively. A comparative HPTLC fingerprinting and the antioxidant activity of C. gloeosporioides associated with two different hosts (leaf of O. indicum and dead twigs of other plant) showed that C. gloeosporioides produces bioactive compounds in a host-dependent manner.


Assuntos
Bignoniaceae , Fungos não Classificados , Antioxidantes/metabolismo , Bioprospecção , Endófitos/metabolismo , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA