Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 26(11): 2586-2590, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33079040

RESUMO

The Federal Select Agent Program dictates that all research entities in the United States must rigorously assess laboratory protocols to sterilize samples being removed from containment areas. We validated procedures using sterile filtration and methanol to remove the following select agents: Francisella tularensis, Burkholderia pseudomallei, B. mallei, Yersinia pestis, and Bacillus anthracis. We validated methanol treatment for B. pseudomallei. These validations reaffirm safety protocols that enable researchers to keep samples sufficiently intact when samples are transferred between laboratories.


Assuntos
Contenção de Riscos Biológicos/normas , Laboratórios/normas , Bacillus anthracis , Burkholderia mallei , Burkholderia pseudomallei , Francisella tularensis , Esterilização , Yersinia pestis
2.
J Bacteriol ; 200(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29109185

RESUMO

A network of genes and at least two peptide signaling molecules tightly control when Streptococcus mutans becomes competent to take up DNA from its environment. Widespread changes in the expression of genes occur when S. mutans is presented with competence signal peptides in vitro, including the increased production of the alternative sigma factor, ComX, which activates late competence genes. Still, the way that gene products that are regulated by competence peptides influence DNA uptake and cellular physiology are not well understood. Here, we developed and employed comprehensive transposon mutagenesis of the S. mutans genome, with a screen to identify mutants that aberrantly expressed comX, coupled with transposon sequencing (Tn-seq) to gain a more thorough understanding of the factors modulating comX expression and progression to the competent state. The screens effectively identified genes known to affect competence, e.g., comR, comS, comD, comE, cipB, clpX, rcrR, and ciaH, but disclosed an additional 20 genes that were not previously competence associated. The competence phenotypes of mutants were characterized, including by fluorescence microscopy to determine at which stage the mutants were impaired for comX activation. Among the novel genes studied were those implicated in cell division, the sensing of cell envelope stress, cell envelope biogenesis, and RNA stability. Our results provide a platform for determining the specific chemical and physical cues that are required for genetic competence in S. mutans, while highlighting the effectiveness of using Tn-seq in S. mutans to discover and study novel biological processes.IMPORTANCEStreptococcus mutans acquires DNA from its environment by becoming genetically competent, a physiologic state triggered by cell-cell communication using secreted peptides. Competence is important for acquiring novel genetic traits and has a strong influence on the expression of virulence-associated traits of S. mutans Here, we used transposon mutagenesis and genomic technologies to identify novel genes involved in competence development. In addition to identifying genes previously known to be required for comX expression, 20 additional genes were identified and characterized. The findings create opportunities to diminish the pathogenic potential of S. mutans, while validating technologies that can rapidly advance our understanding of the physiology, biology, and genetics of S. mutans and related pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Competência de Transformação por DNA/fisiologia , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Streptococcus mutans/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Mutação , Streptococcus mutans/metabolismo
3.
J Nucl Med ; 64(5): 809-815, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522188

RESUMO

Infectious disease remains the main cause of morbidity and mortality throughout the world. Of growing concern is the rising incidence of multidrug-resistant bacteria, derived from various selection pressures. Many of these bacterial infections are hospital-acquired and have prompted the Centers for Disease Control and Prevention in 2019 to reclassify several pathogens as urgent threats, its most perilous assignment. Consequently, there is an urgent need to improve the clinical management of bacterial infection via new methods to specifically identify bacteria and monitor antibiotic efficacy in vivo. In this work, we developed a novel radiopharmaceutical, 2-18F-fluoro-2-deoxy-mannitol (18F-fluoromannitol), which we found to specifically accumulate in both gram-positive and gram-negative bacteria but not in mammalian cells in vitro or in vivo. Methods: Clinical isolates of bacteria were serially obtained from wounds of combat service members for all in vitro and in vivo studies. Bacterial infection was quantified in vivo using PET/CT, and infected tissue was excised to confirm radioactivity counts ex vivo. We used these same tissues to confirm the presence of bacteria by extracting and correlating radioactive counts with colony-forming units of bacteria. Results: 18F-fluoromannitol was able to differentiate sterile inflammation from Staphylococcus aureus and Escherichia coli infections in vivo in a murine myositis model using PET imaging. Our study was extended to a laceration wound model infected with Acinetobacter baumannii, an important pathogen in the nosocomial and battlefield setting. 18F-fluoromannitol PET rapidly and specifically detected infections caused by A. baumannii and several other important pathogens (Enterococcus faecium, S. aureus, Klebsiella pneumoniae, A. baumannii, Pseudomonas aeruginosa, and Enterobacter spp.). Importantly, 18F-fluoromannitol PET was able to monitor the therapeutic efficacy of vancomycin against S. aureus in vivo. Conclusion: The ease of production of 18F-fluoromannitol is anticipated to facilitate wide radiopharmaceutical dissemination. Furthermore, the broad sensitivity of 18F-fluoromannitol for bacterial infection in vivo suggests that it is an ideal imaging agent for clinical translation to detect and monitor infections and warrants further studies in the clinical setting.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Camundongos , Animais , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Bactérias Gram-Positivas , Bactérias , Infecções Estafilocócicas/diagnóstico por imagem , Infecções Estafilocócicas/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA