Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Neuropathol ; 145(1): 71-82, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271929

RESUMO

High-grade astrocytoma with piloid features (HGAP) is a recently recognized glioma type whose classification is dependent on its global epigenetic signature. HGAP is characterized by alterations in the mitogen-activated protein kinase (MAPK) pathway, often co-occurring with CDKN2A/B homozygous deletion and/or ATRX mutation. Experience with HGAP is limited and to better understand this tumor type, we evaluated an expanded cohort of patients (n = 144) with these tumors, as defined by DNA methylation array testing, with a subset additionally evaluated by next-generation sequencing (NGS). Among evaluable cases, we confirmed the high prevalence CDKN2A/B homozygous deletion, and/or ATRX mutations/loss in this tumor type, along with a subset showing NF1 alterations. Five of 93 (5.4%) cases sequenced harbored TP53 mutations and RNA fusion analysis identified a single tumor containing an NTRK2 gene fusion, neither of which have been previously reported in HGAP. Clustering analysis revealed the presence of three distinct HGAP subtypes (or groups = g) based on whole-genome DNA methylation patterns, which we provisionally designated as gNF1 (n = 18), g1 (n = 72), and g2 (n = 54) (median ages 43.5 years, 47 years, and 32 years, respectively). Subtype gNF1 is notable for enrichment with patients with Neurofibromatosis Type 1 (33.3%, p = 0.0008), confinement to the posterior fossa, hypermethylation in the NF1 enhancer region, a trend towards decreased progression-free survival (p = 0.0579), RNA processing pathway dysregulation, and elevated non-neoplastic glia and neuron cell content (p < 0.0001 and p < 0.0001, respectively). Overall, our expanded cohort broadens the genetic, epigenetic, and clinical phenotype of HGAP and provides evidence for distinct epigenetic subtypes in this tumor type.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neurofibromatose 1 , Humanos , Neurofibromatose 1/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Homozigoto , Deleção de Sequência , Astrocitoma/genética , Astrocitoma/patologia , Mutação/genética , Metilação de DNA/genética
2.
Acta Neuropathol ; 143(3): 403-414, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35103816

RESUMO

Tumors of the central nervous system (CNS) often display a wide morphologic spectrum that has, until recently, been the sole basis for tumor classification. The introduction of the integrated histomolecular diagnostic approach in CNS tumors has facilitated a classification system that is increasingly data-driven and with improved alignment to clinical outcome. Here, we report a previously uncharacterized glioma type (n = 31) using unsupervised clustering analysis of DNA methylation array data from approximately 14,000 CNS tumor samples. Histologic examination revealed circumscribed growth and morphologic similarities to pleomorphic xanthoastrocytoma (PXA), astroblastoma, ependymoma, polymorphous neuroepithelial tumor of the young (PLNTY), and IDH-wildtype glioblastoma (GBM). Median age (46.5 years) was significantly older than other circumscribed gliomas and younger than GBM. Dimensionality reduction with uniform manifold approximation and projection (UMAP) and hierarchical clustering confirmed a methylation signature distinct from known tumor types and methylation classes. DNA sequencing revealed recurrent mutations in TP53 (57%), RB1 (26%), NF1 (26%), and NF2 (14%). BRAF V600E mutations were detected in 3/27 sequenced cases (12%). Copy number analysis showed increased whole chromosome aneuploidy with recurrent loss of chromosome 13 (28/31 cases, 90%). CDKN2A/B deletion (2/31, 6%) and MGMT promoter methylation (1/31, 3%) were notably rare events. Most tumors showed features of a high-grade glioma, yet survival data showed significantly better overall survival compared to GBM (p < 0.0001). In summary, we describe a previously uncharacterized glioma of adults identified by a distinct DNA methylation signature and recurrent loss of chromosome 13.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Monossomia , Mutação , Proteína Supressora de Tumor p53 , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Cromossomos Humanos Par 13 , Humanos , Pessoa de Meia-Idade , Mutação/genética , Proteína Supressora de Tumor p53/genética
5.
Mol Cancer Res ; 22(1): 21-28, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37870438

RESUMO

DNA methylation is an essential molecular assay for central nervous system (CNS) tumor diagnostics. While some fusions define specific brain tumors, others occur across many different diagnoses. We performed a retrospective analysis of 219 primary CNS tumors with whole genome DNA methylation and RNA next-generation sequencing. DNA methylation profiling results were compared with RNAseq detected gene fusions. We detected 105 rare fusions involving 31 driver genes, including 23 fusions previously not implicated in brain tumors. In addition, we identified 6 multi-fusion tumors. Rare fusions and multi-fusion events can impact the diagnostic accuracy of DNA methylation by decreasing confidence in the result, such as BRAF, RAF, or FGFR1 fusions, or result in a complete mismatch, such as NTRK, EWSR1, FGFR, and ALK fusions. IMPLICATIONS: DNA methylation signatures need to be interpreted in the context of pathology and discordant results warrant testing for novel and rare gene fusions.


Assuntos
Neoplasias Encefálicas , Metilação de DNA , Humanos , Metilação de DNA/genética , Estudos Retrospectivos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Fusão Gênica , Proteínas de Fusão Oncogênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA