Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
BMC Genomics ; 18(1): 841, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096601

RESUMO

BACKGROUND: Infants born prematurely, particularly extremely low birth weight infants (ELBW) have altered gut microbial communities. Factors such as maternal health, gut immaturity, delivery mode, and antibiotic treatments are associated with microbiota disturbances, and are linked to an increased risk of certain diseases such as necrotising enterocolitis. Therefore, there is a requirement to optimally characterise microbial profiles in this at-risk cohort, via standardisation of methods, particularly for studying the influence of microbiota therapies (e.g. probiotic supplementation) on community profiles and health outcomes. Profiling of faecal samples using the 16S rRNA gene is a cost-efficient method for large-scale clinical studies to gain insights into the gut microbiota and additionally allows characterisation of cohorts were sample quantities are compromised (e.g. ELBW infants). However, DNA extraction method, and the 16S rRNA region targeted can significantly change bacterial community profiles obtained, and so confound comparisons between studies. Thus, we sought to optimise a 16S rRNA profiling protocol to allow standardisation for studying ELBW infant faecal samples, with or without probiotic supplementation. METHODS: Using ELBW faecal samples, we compared three different DNA extraction methods, and subsequently PCR amplified and sequenced three hypervariable regions of the 16S rRNA gene (V1 + V2 + V3), (V4 + V5) and (V6 + V7 + V8), and compared two bioinformatics approaches to analyse results (OTU and paired end). Paired shotgun metagenomics was used as a 'gold-standard'. RESULTS: Results indicated a longer bead-beating step was required for optimal bacterial DNA extraction and that sequencing regions (V1 + V2 + V3) and (V6 + V7 + V8) provided the most representative taxonomic profiles, which was confirmed via shotgun analysis. Samples sequenced using the (V4 + V5) region were found to be underrepresented in specific taxa including Bifidobacterium, and had altered diversity profiles. Both bioinformatics 16S rRNA pipelines used in this study (OTU and paired end) presented similar taxonomic profiles at genus level. CONCLUSIONS: We determined that DNA extraction from ELBW faecal samples, particularly those infants receiving probiotic supplementation, should include a prolonged beat-beating step. Furthermore, use of the 16S rRNA (V1 + V2 + V3) and (V6 + V7 + V8) regions provides reliable representation of ELBW microbiota profiles, while inclusion of the (V4 + V5) region may not be appropriate for studies where Bifidobacterium constitutes a resident microbiota member.


Assuntos
Microbioma Gastrointestinal/genética , Genômica/métodos , Recém-Nascido de Peso Extremamente Baixo ao Nascer , RNA Ribossômico 16S/genética , Análise de Sequência de RNA/métodos , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Bifidobacterium/fisiologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Lactente , Lactobacillus/efeitos dos fármacos , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Lactobacillus/fisiologia , Masculino , Probióticos/farmacologia , Risco
2.
Nutrients ; 12(4)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235410

RESUMO

BACKGROUND: Bifidobacterium represents an important early life microbiota member. Specific bifidobacterial components, exopolysaccharides (EPS), positively modulate host responses, with purified EPS also suggested to impact microbe-microbe interactions by acting as a nutrient substrate. Thus, we determined the longitudinal effects of bifidobacterial EPS on microbial communities and metabolite profiles using an infant model colon system. METHODS: Differential gene expression and growth characteristics were determined for each strain; Bifidobacterium breve UCC2003 and corresponding isogenic EPS-deletion mutant (B. breve UCC2003del). Model colon vessels were inoculated with B. breve and microbiome dynamics monitored using 16S rRNA sequencing and metabolomics (NMR). RESULTS: Transcriptomics of EPS mutant vs. B. breve UCC2003 highlighted discrete differential gene expression (e.g., eps biosynthetic cluster), though overall growth dynamics between strains were unaffected. The EPS-positive vessel had significant shifts in microbiome and metabolite profiles until study end (405 h); with increases of Tyzzerella and Faecalibacterium, and short-chain fatty acids, with further correlations between taxa and metabolites which were not observed within the EPS-negative vessel. CONCLUSIONS: These data indicate that B. breve UCC2003 EPS is potentially metabolized by infant microbiota members, leading to differential microbial metabolism and altered metabolite by-products. Overall, these findings may allow development of EPS-specific strategies to promote infant health.


Assuntos
Bifidobacterium breve/genética , Bifidobacterium breve/fisiologia , Colo/metabolismo , Colo/microbiologia , Suplementos Nutricionais , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Saúde do Lactente , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Bifidobacterium breve/crescimento & desenvolvimento , Expressão Gênica , Humanos , Lactente , Mutação , RNA Ribossômico 16S/genética
3.
Cell Rep Med ; 1(5): 100077, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32904427

RESUMO

Supplementation with members of the early-life microbiota as "probiotics" is increasingly used in attempts to beneficially manipulate the preterm infant gut microbiota. We performed a large observational longitudinal study comprising two preterm groups: 101 infants orally supplemented with Bifidobacterium and Lactobacillus (Bif/Lacto) and 133 infants non-supplemented (control) matched by age, sex, and delivery method. 16S rRNA gene profiling on fecal samples (n = 592) showed a predominance of Bifidobacterium and a lower abundance of pathobionts in the Bif/Lacto group. Metabolomic analysis showed higher fecal acetate and lactate and a lower fecal pH in the Bif/Lacto group compared to the control group. Fecal acetate positively correlated with relative abundance of Bifidobacterium, consistent with the ability of the supplemented Bifidobacterium strain to metabolize human milk oligosaccharides into acetate. This study demonstrates that microbiota supplementation is associated with a Bifidobacterium-dominated preterm microbiota and gastrointestinal environment more closely resembling that of full-term infants.


Assuntos
Bifidobacterium/fisiologia , Microbioma Gastrointestinal/fisiologia , Recém-Nascido Prematuro/metabolismo , Recém-Nascido Prematuro/fisiologia , Lactobacillus/fisiologia , Metaboloma/fisiologia , Bifidobacterium/genética , Aleitamento Materno/métodos , Suplementos Nutricionais/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Humanos , Lactente , Recém-Nascido , Lactobacillus/genética , Estudos Longitudinais , Leite Humano/microbiologia , Probióticos/administração & dosagem , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA