Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angiogenesis ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771392

RESUMO

Induced pluripotent stem cell (iPSC) derived endothelial cells (iECs) have emerged as a promising tool for studying vascular biology and providing a platform for modelling various vascular diseases, including those with genetic origins. Currently, primary ECs are the main source for disease modelling in this field. However, they are difficult to edit and have a limited lifespan. To study the effects of targeted mutations on an endogenous level, we generated and characterized an iPSC derived model for venous malformations (VMs). CRISPR-Cas9 technology was used to generate a novel human iPSC line with an amino acid substitution L914F in the TIE2 receptor, known to cause VMs. This enabled us to study the differential effects of VM causative mutations in iECs in multiple in vitro models and assess their ability to form vessels in vivo. The analysis of TIE2 expression levels in TIE2L914F iECs showed a significantly lower expression of TIE2 on mRNA and protein level, which has not been observed before due to a lack of models with endogenous edited TIE2L914F and sparse patient data. Interestingly, the TIE2 pathway was still significantly upregulated and TIE2 showed high levels of phosphorylation. TIE2L914F iECs exhibited dysregulated angiogenesis markers and upregulated migration capability, while proliferation was not affected. Under shear stress TIE2L914F iECs showed reduced alignment in the flow direction and a larger cell area than TIE2WT iECs. In summary, we developed a novel TIE2L914F iPSC-derived iEC model and characterized it in multiple in vitro models. The model can be used in future work for drug screening for novel treatments for VMs.

3.
Tissue Barriers ; : 2315702, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346163

RESUMO

The development of new therapies is hampered by the lack of predictive, and patient-relevant in vitro models. Organ-on-chip (OOC) technologies can potentially recreate physiological features and hold great promise for tissue and disease modeling. However, the non-standardized design of these chips and perfusion control systems has been a barrier to quantitative high-throughput screening (HTS). Here we present a scalable OOC microfluidic platform for applied kinetic in vitro assays (AKITA) that is applicable for high, medium, and low throughput. Its standard 96-well plate and 384-well plate layouts ensure compatibility with existing laboratory workflows and high-throughput data collection and analysis tools. The AKITA plate is optimized for the modeling of vascularized biological barriers, primarily the blood-brain barrier, skin, and lung, with precise flow control on a custom rocker. The integration of trans-epithelial electrical resistance (TEER) sensors allows rapid and repeated monitoring of barrier integrity over long time periods. Together with automated liquid handling and compound permeability testing analyses, we demonstrate the flexibility of the AKITA platform for establishing human-relevant models for preclinical drug and precision medicine's efficacy, toxicity, and permeability under near-physiological conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA