Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 96(4): e0173921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34908447

RESUMO

Two strains of Middle East respiratory syndrome coronavirus (MERS-CoV), England 1 and Erasmus Medical Centre/2012 (EMC/2012), were used to challenge common marmosets (Callithrix jacchus) by three routes of infection: aerosol, oral, and intranasal. Animals challenged by the intranasal and aerosol routes presented with mild, transient disease, while those challenged by the oral route presented with a subclinical immunological response. Animals challenged with MERS-CoV strain EMC/2012 by the aerosol route responded with primary and/or secondary pyrexia. Marmosets had minimal to mild multifocal interstitial pneumonia, with the greatest relative severity being observed in animals challenged by the aerosol route. Viable virus was isolated from the host in throat swabs and lung tissue. The transient disease described is consistent with a successful host response and was characterized by the upregulation of macrophage and neutrophil function observed in all animals at the time of euthanasia. IMPORTANCE Middle East respiratory syndrome is caused by a human coronavirus, MERS-CoV, similar to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Humans typically exhibit fever, cough, shortness of breath, gastrointestinal issues, and breathing difficulties, which can lead to pneumonia and/or renal complications. This emerging disease resulted in the first human lethal cases in 2012 and has a case fatality rate of approximately 36%. Consequently, there is a need for medical countermeasures and appropriate animal models for their assessment. This work has demonstrated the requirement for higher concentrations of virus to cause overt disease. Challenge by the aerosol, intranasal, and oral routes resulted in no or mild disease, but all animals had an immunological response. This shows that an appropriate early immunological response is able to control the disease.


Assuntos
COVID-19/metabolismo , Modelos Animais de Doenças , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , SARS-CoV-2/metabolismo , Animais , Callithrix , Humanos
2.
Viruses ; 14(7)2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35891560

RESUMO

There is an enduring requirement to develop animal models of COVID-19 to assess the efficacy of vaccines and therapeutics that can be used to treat the disease in humans. In this study, six marmosets were exposed to a small particle aerosol (1-3 µm) of SARS-CoV-2 VIC01 that delivered the virus directly to the lower respiratory tract. Following the challenge, marmosets did not develop clinical signs, although a disruption to the normal diurnal temperature rhythm was observed in three out of six animals. Early weight loss and changes to respiratory pattern and activity were also observed, yet there was limited evidence of viral replication or lung pathology associated with infection. There was a robust innate immunological response to infection, which included an early increase in circulating neutrophils and monocytes and a reduction in the proportion of circulating T-cells. Expression of the ACE2 receptor in respiratory tissues was almost absent, but there was ubiquitous expression of TMPRSS2. The results of this study indicate that exposure of marmosets to high concentrations of aerosolised SARS-CoV-2 did not result in the development of clear, reproducible signs of COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , Callithrix/metabolismo , Humanos , Peptidil Dipeptidase A/metabolismo
3.
Sci Rep ; 9(1): 7225, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076594

RESUMO

With the rise of antimicrobial resistance, novel ways to treat bacterial infections are required and the use of predatory bacteria may be one such approach. Bdellovibrio species have been shown in vitro to predate on a wide range of other Gram-negative bacteria, including CDC category A/B pathogens such as Yersinia pestis. The data reported here show that treatment of SKH-1 mice with Bdellovibrio bacteriovorus HD100 provided significant protection from a lethal challenge of Yersinia pestis CO92. This is the first report of protection conferred by predation in vivo against a systemic pathogen challenge. However, this protective effect was not observed in a preliminary study with Balb/c mice. Therefore the effects of the predatory bacteria are complex and may be dependent on immune status/genetics of the host. Overall, predatory bacteria may have utility as a therapeutic modality but further work is required to understand the predator-host interaction.


Assuntos
Bdellovibrio bacteriovorus/fisiologia , Peste/prevenção & controle , Yersinia pestis/patogenicidade , Animais , Modelos Animais de Doenças , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Imagem Óptica , Fagocitose , Peste/microbiologia , Peste/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA