Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 600(7890): 653-658, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34937900

RESUMO

Integrated photonics facilitates extensive control over fundamental light-matter interactions in manifold quantum systems including atoms1, trapped ions2,3, quantum dots4 and defect centres5. Ultrafast electron microscopy has recently made free-electron beams the subject of laser-based quantum manipulation and characterization6-11, enabling the observation of free-electron quantum walks12-14, attosecond electron pulses10,15-17 and holographic electromagnetic imaging18. Chip-based photonics19,20 promises unique applications in nanoscale quantum control and sensing but remains to be realized in electron microscopy. Here we merge integrated photonics with electron microscopy, demonstrating coherent phase modulation of a continuous electron beam using a silicon nitride microresonator. The high-finesse (Q0 ≈ 106) cavity enhancement and a waveguide designed for phase matching lead to efficient electron-light scattering at extremely low, continuous-wave optical powers. Specifically, we fully deplete the initial electron state at a cavity-coupled power of only 5.35 microwatts and generate >500 electron energy sidebands for several milliwatts. Moreover, we probe unidirectional intracavity fields with microelectronvolt resolution in electron-energy-gain spectroscopy21. The fibre-coupled photonic structures feature single-optical-mode electron-light interaction with full control over the input and output light. This approach establishes a versatile and highly efficient framework for enhanced electron beam control in the context of laser phase plates22, beam modulators and continuous-wave attosecond pulse trains23, resonantly enhanced spectroscopy24-26 and dielectric laser acceleration19,20,27. Our work introduces a universal platform for exploring free-electron quantum optics28-31, with potential future developments in strong coupling, local quantum probing and electron-photon entanglement.

2.
Nature ; 582(7810): 46-49, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32494079

RESUMO

Free-electron beams are versatile probes of microscopic structure and composition1,2, and have revolutionized atomic-scale imaging in several fields, from solid-state physics to structural biology3. Over the past decade, the manipulation and interaction of electrons with optical fields have enabled considerable progress in imaging methods4, near-field electron acceleration5,6, and four-dimensional microscopy techniques with high temporal and spatial resolution7. However, electron beams typically couple only weakly to optical excitations, and emerging applications in electron control and sensing8-11 require large enhancements using tailored fields and interactions. Here we couple a free-electron beam to a travelling-wave resonant cavity mode. The enhanced interaction with the optical whispering-gallery modes of dielectric microresonators induces a strong phase modulation on co-propagating electrons, which leads to a spectral broadening of 700 electronvolts, corresponding to the absorption and emission of hundreds of photons. By mapping the near-field interaction with ultrashort electron pulses in space and time, we trace the lifetime of the the microresonator following a femtosecond excitation and observe the spectral response of the cavity. The natural matching of free electrons to these quintessential optical modes could enable the application of integrated photonics technology in electron microscopy, with broad implications for attosecond structuring, probing quantum emitters and possible electron-light entanglement.

3.
Opt Express ; 31(23): 37980-37992, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017916

RESUMO

The advent of ultrafast science with pulsed electron beams raised the need to control the temporal features of the electron pulses. One promising suggestion is the nano-selective quantum optics with multi-electrons, which scales quadratically with the number of electrons within the coherence time of the quantum system. Terahertz (THz) radiation from optical nonlinear crystals is an attractive methodology to generate the rapidly varying electric fields necessary for electron compression, with the advantage of an inherent temporal locking to laser-triggered electrons, such as in ultrafast electron microscopes. Longer (picosecond-) pulses require a sub-THz field for their compression. However, the generation of such low frequencies requires pumping with energetic optical pulses and their focusability is fundamentally limited by their mm-wavelength. This work proposes electron-pulse compression with sub-THz fields directly in the vicinity of their dipolar origin, thereby avoiding mediation through radiation. We analyze the merits of nearfields for compression of slow electrons, particularly in challenging regimes for THz radiation, such as small numerical apertures, micro-joule-level optical pump pulses, and low frequencies. This scheme can be implemented within the tight constraints of electron microscopes and reach fields of a few kV/cm below 0.1 THz at high repetition rates. Our paradigm offers a realistic approach for controlling electron pulses spatially and temporally in many experiments, opening the path of flexible multi-electron manipulation for analytic and quantum sciences.

4.
Nano Lett ; 20(6): 4377-4383, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32383890

RESUMO

Circular dichroism spectroscopy is an essential technique for understanding molecular structure and magnetic materials; however, spatial resolution is limited by the wavelength of light, and sensitivity sufficient for single-molecule spectroscopy is challenging. We demonstrate that electrons can efficiently measure the interaction between circularly polarized light and chiral materials with deeply subwavelength resolution. By scanning a nanometer-sized focused electron beam across an optically excited chiral nanostructure and measuring the electron energy spectrum at each probe position, we produce a high-spatial-resolution map of near-field dichroism. This technique offers a nanoscale view of a fundamental symmetry and could be employed as "photon staining" to increase biomolecular material contrast in electron microscopy.


Assuntos
Elétrons , Fótons , Dicroísmo Circular
5.
Phys Rev Lett ; 123(10): 103602, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573279

RESUMO

This Letter sets a road map towards an experimental realization of strong coupling between free electrons and photons and analytically explores entanglement phenomena that emerge in this regime. The proposed model unifies the strong-coupling predictions with known electron-photon interactions. Additionally, this Letter predicts a non-Columbic entanglement between freely propagating electrons. Since strong coupling can map entanglements between photon pairs onto photon-electron pairs, it may harness electron beams for quantum communication, thus far exclusive to photons.

6.
Proc Natl Acad Sci U S A ; 112(46): 14206-11, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26534992

RESUMO

We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

9.
Opt Lett ; 42(7): 1349-1352, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362766

RESUMO

Phase matching in high-harmonic generation leads to enhancement of multiple harmonics. It is sometimes desired to control the spectral structure within the phase-matched spectral region. We propose a scheme for selective suppression of high-order harmonics within the phase-matched spectral region while weakly influencing the other harmonics. The method is based on addition of phase-mismatched segments within a phase-matched medium. We demonstrate the method numerically in two examples. First, we show that one phase-mismatched segment can significantly suppress harmonic orders 9, 15, and 21. Second, we show that two phase-mismatched segments can efficiently suppress circularly polarized harmonics with one helicity over the other when driven by a bi-circular field. The new method may be useful for various applications, including the generation of highly helical bright attosecond pulses.

10.
Nat Mater ; 12(2): 158-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23142836

RESUMO

Semiconductor photoelectrodes for solar hydrogen production by water photoelectrolysis must employ stable, non-toxic, abundant and inexpensive visible-light absorbers. Iron oxide (α-Fe(2)O(3)) is one of few materials meeting these requirements, but its poor transport properties present challenges for efficient charge-carrier generation, separation, collection and injection. Here we show that these challenges can be addressed by means of resonant light trapping in ultrathin films designed as optical cavities. Interference between forward- and backward-propagating waves enhances the light absorption in quarter-wave or, in some cases, deeper subwavelength films, amplifying the intensity close to the surface wherein photogenerated minority charge carriers (holes) can reach the surface and oxidize water before recombination takes place. Combining this effect with photon retrapping schemes, such as using V-shaped cells, provides efficient light harvesting in ultrathin films of high internal quantum efficiency, overcoming the trade-off between light absorption and charge collection. A water photo-oxidation current density of 4 mA cm(-2) was achieved using a V-shaped cell comprising ~26-nm-thick Ti-doped α-Fe(2)O(3) films on back-reflector substrates coated with silver-gold alloy.

11.
Opt Express ; 21(17): 19690-700, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-24105516

RESUMO

We propose lattice soleakons: self-trapped waves that self-consistently populate slowly-attenuating leaky modes of their self-induced defects in periodic potentials. Two types, discrete and Bragg, lattice soleakons are predicted. Discrete soleakons that are supported by combination of self-focusing and self-defocusing nonlinearities propagate robustly for long propagation distances. They eventually abruptly disintegrate because they emit power to infinity at an increasing pace. In contrast, Bragg soleakons self-trap by only self-focusing nonlinearity. Also, they do not disintegrate because they emit power at a decreasing rate.

12.
Science ; 377(6607): 777-780, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35951690

RESUMO

Quantum information, communication, and sensing rely on the generation and control of quantum correlations in complementary degrees of freedom. Free electrons coupled to photonics promise novel hybrid quantum technologies, although single-particle correlations and entanglement have yet to be shown. In this work, we demonstrate the preparation of electron-photon pair states using the phase-matched interaction of free electrons with the evanescent vacuum field of a photonic chip-based optical microresonator. Spontaneous inelastic scattering produces intracavity photons coincident with energy-shifted electrons, which we employ for noise-suppressed optical mode imaging. This parametric pair-state preparation will underpin the future development of free-electron quantum optics, providing a route to quantum-enhanced imaging, electron-photon entanglement, and heralded single-electron and Fock-state photon sources.

13.
Opt Express ; 19(22): 21730-8, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22109023

RESUMO

We propose a scheme for producing attosecond pulses with sophisticated spatio-spectral waveforms. The profile of a seed attosecond pulse is modified and its central frequency is up-converted through interaction with an infrared pump pulse. The transverse profile of the infrared beam and a spatiotemporal shift between the seed and infrared pulses are used for manipulating the spatio-spectral waveform of the generated pulse beam. We present several examples of sophisticated isolated attosecond pulse beam generation, including spatio-spectral Airy beam that exhibits prismatic self-bending effect and a beam undergoing auto-focusing to a sub-micron spot without the need of a focusing lens or nonlinearity.

14.
Nat Commun ; 12(1): 6337, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732725

RESUMO

Light-induced magnetization changes, such as all-optical switching, skyrmion nucleation, and intersite spin transfer, unfold on temporal and spatial scales down to femtoseconds and nanometers, respectively. Pump-probe spectroscopy and diffraction studies indicate that spatio-temporal dynamics may drastically affect the non-equilibrium magnetic evolution. Yet, direct real-space magnetic imaging on the relevant timescales has remained challenging. Here, we demonstrate ultrafast high-harmonic nanoscopy employing circularly polarized high-harmonic radiation for real-space imaging of femtosecond magnetization dynamics. We map quenched magnetic domains and localized spin structures in Co/Pd multilayers with a sub-wavelength spatial resolution down to 16 nm, and strobosocopically trace the local magnetization dynamics with 40 fs temporal resolution. Our compact experimental setup demonstrates the highest spatio-temporal resolution of magneto-optical imaging to date. Facilitating ultrafast imaging with high sensitivity to chiral and linear dichroism, we envisage a wide range of applications spanning magnetism, phase transitions, and carrier dynamics.

15.
ACS Nano ; 15(4): 7290-7304, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33724007

RESUMO

Spontaneous processes triggered in a sample by free electrons, such as cathodoluminescence, are commonly regarded and detected as stochastic events. Here, we supplement this picture by showing through first-principles theory that light and free-electron pulses can interfere when interacting with a nanostructure, giving rise to a modulation in the spectral distribution of the cathodoluminescence light emission that is strongly dependent on the electron wave function. Specifically, for a temporally focused electron, cathodoluminescence can be canceled upon illumination with a spectrally modulated dimmed laser that is phase-locked relative to the electron density profile. We illustrate this idea with realistic simulations under attainable conditions in currently available ultrafast electron microscopes. We further argue that the interference between excitations produced by light and free electrons enables the manipulation of the ultrafast materials response by combining the spectral and temporal selectivity of the light with the atomic resolution of electron beams.

16.
Sci Adv ; 7(18)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33931451

RESUMO

We theoretically investigate the quantum-coherence properties of the cathodoluminescence (CL) emission produced by a temporally modulated electron beam. Specifically, we consider the quantum-optical correlations of CL produced by electrons that are previously shaped by a laser field. Our main prediction is the presence of phase correlations between the emitted CL field and the electron-modulating laser, even though the emission intensity and spectral profile are independent of the electron state. In addition, the coherence of the CL field extends to harmonics of the laser frequency. Since electron beams can be focused to below 1 Å, their ability to transfer optical coherence could enable the ultra-precise excitation, manipulation, and spectrally resolved probing of nanoscale quantum systems.

17.
Nat Commun ; 12(1): 3723, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140484

RESUMO

Strong-field methods in solids enable new strategies for ultrafast nonlinear spectroscopy and provide all-optical insights into the electronic properties of condensed matter in reciprocal and real space. Additionally, solid-state media offers unprecedented possibilities to control high-harmonic generation using modified targets or tailored excitation fields. Here we merge these important points and demonstrate circularly-polarized high-harmonic generation with polarization-matched excitation fields for spectroscopy of chiral electronic properties at surfaces. The sensitivity of our approach is demonstrated for structural helicity and termination-mediated ferromagnetic order at the surface of silicon-dioxide and magnesium oxide, respectively. Circularly polarized radiation emanating from a solid sample now allows to add basic symmetry properties as chirality to the arsenal of strong-field spectroscopy in solids. Together with its inherent temporal (femtosecond) resolution and non-resonant broadband spectrum, the polarization control of high harmonics from condensed matter can illuminate ultrafast and strong field dynamics of surfaces, buried layers or thin films.

18.
Sci Adv ; 3(12): eaao4641, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29250601

RESUMO

This work demonstrates nanoscale magnetic imaging using bright circularly polarized high-harmonic radiation. We utilize the magneto-optical contrast of worm-like magnetic domains in a Co/Pd multilayer structure, obtaining quantitative amplitude and phase maps by lensless imaging. A diffraction-limited spatial resolution of 49 nm is achieved with iterative phase reconstruction enhanced by a holographic mask. Harnessing the exceptional coherence of high harmonics, this approach will facilitate quantitative, element-specific, and spatially resolved studies of ultrafast magnetization dynamics, advancing both fundamental and applied aspects of nanoscale magnetism.

19.
Sci Adv ; 2(2): e1501333, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26989782

RESUMO

Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date.

20.
Nat Commun ; 6: 8209, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26345495

RESUMO

Phase-retrieval problems of one-dimensional (1D) signals are known to suffer from ambiguity that hampers their recovery from measurements of their Fourier magnitude, even when their support (a region that confines the signal) is known. Here we demonstrate sparsity-based coherent diffraction imaging of 1D objects using extreme-ultraviolet radiation produced from high harmonic generation. Using sparsity as prior information removes the ambiguity in many cases and enhances the resolution beyond the physical limit of the microscope. Our approach may be used in a variety of problems, such as diagnostics of defects in microelectronic chips. Importantly, this is the first demonstration of sparsity-based 1D phase retrieval from actual experiments, hence it paves the way for greatly improving the performance of Fourier-based measurement systems where 1D signals are inherent, such as diagnostics of ultrashort laser pulses, deciphering the complex time-dependent response functions (for example, time-dependent permittivity and permeability) from spectral measurements and vice versa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA