Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 101(12): 1585-1596, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34489559

RESUMO

Osteosarcoma has a guarded prognosis. A major hurdle in developing more effective osteosarcoma therapies is the lack of disease-specific biomarkers to predict risk, prognosis, or therapeutic response. Exosomes are secreted extracellular microvesicles emerging as powerful diagnostic tools. However, their clinical application is precluded by challenges in identifying disease-associated cargo from the vastly larger background of normal exosome cargo. We developed a method using canine osteosarcoma in mouse xenografts to distinguish tumor-derived from host-response exosomal messenger RNAs (mRNAs). The model allows for the identification of canine osteosarcoma-specific gene signatures by RNA sequencing and a species-differentiating bioinformatics pipeline. An osteosarcoma-associated signature consisting of five gene transcripts (SKA2, NEU1, PAF1, PSMG2, and NOB1) was validated in dogs with spontaneous osteosarcoma by real-time quantitative reverse transcription PCR (qRT-PCR), while a machine learning model assigned dogs into healthy or disease groups. Serum/plasma exosomes were isolated from 53 dogs in distinct clinical groups ("healthy", "osteosarcoma", "other bone tumor", or "non-neoplastic disease"). Pre-treatment samples from osteosarcoma cases were used as the training set, and a validation set from post-treatment samples was used for testing, classifying as "osteosarcoma detected" or "osteosarcoma-NOT detected". Dogs in a validation set whose post-treatment samples were classified as "osteosarcoma-NOT detected" had longer remissions, up to 15 months after treatment. In conclusion, we identified a gene signature predictive of molecular remissions with potential applications in the early detection and minimal residual disease settings. These results provide proof of concept for our discovery platform and its utilization in future studies to inform cancer risk, diagnosis, prognosis, and therapeutic response.


Assuntos
Biomarcadores Tumorais/metabolismo , Osteossarcoma/metabolismo , Animais , Linhagem Celular Tumoral , Cães , Exossomos/metabolismo , Feminino , Humanos , Aprendizado de Máquina , Camundongos Nus , Transplante de Neoplasias , Osteossarcoma/diagnóstico , Cultura Primária de Células , Prognóstico , Células Estromais/fisiologia
2.
Mol Carcinog ; 55(12): 2168-2182, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26785143

RESUMO

Recently, we have shown that (S)-N'-Nitrosonornicotine [(S)-NNN], the major form of NNN in tobacco products, is a potent oral cavity and esophageal carcinogen in rats. To determine the early molecular alterations induced by (S)-NNN in the oral and esophageal mucosa, we administered the carcinogen to rats in the drinking water for 10 wk and global gene expression alterations were analyzed by RNA sequencing. At a false discovery rate P-value < 0.05 and fold-change ≥2, we found alterations in the level of 39 genes in the oral cavity and 69 genes in the esophagus. Validation of RNA sequencing results by qRT-PCR assays revealed a high cross-platform concordance. The most significant impact of exposure to (S)-NNN was alteration of genes involved in immune regulation (Aire, Ctla4, and CD80), inflammation (Ephx2 and Inpp5d) and cancer (Cdkn2a, Dhh, Fetub B, Inpp5d, Ly6E, Nr1d1, and Wnt6). Consistent with the findings in rat tissues, most of the genes were deregulated, albeit to different degrees, in immortalized oral keratinocytes treated with (S)-NNN and in non-treated premalignant oral cells and malignant oral and head and neck squamous cells. Furthermore, interrogation of TCGA data sets showed that genes deregulated by (S)-NNN in rat tissues (Fetub, Ly6e, Nr1d1, Cacna1c, Cd80, and Dgkg) are also altered in esophageal and head and neck tumors. Overall, our findings provide novel insights into early molecular changes induced by (S)-NNN and, therefore, could contribute to the development of biomarkers for the early detection and prevention of (S)-NNN-associated oral and esophageal cancers. © 2016 Wiley Periodicals, Inc.


Assuntos
Carcinogênese/genética , Carcinógenos/toxicidade , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais/genética , Nitrosaminas/toxicidade , Transcriptoma , Animais , Carcinogênese/induzido quimicamente , Carcinógenos/administração & dosagem , Neoplasias Esofágicas/induzido quimicamente , Esôfago/efeitos dos fármacos , Esôfago/metabolismo , Humanos , Masculino , Boca/efeitos dos fármacos , Boca/metabolismo , Neoplasias Bucais/induzido quimicamente , Nitrosaminas/administração & dosagem , Ratos Endogâmicos F344
3.
Inflamm Res ; 64(5): 343-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25795230

RESUMO

INTRODUCTION: Chronic pulmonary inflammation has been consistently shown to increase the risk of lung cancer. Therefore, assessing the molecular links between the two diseases and identification of chemopreventive agents that inhibit inflammation-driven lung tumorigenesis is indispensable. MATERIALS AND METHODS: Female A/J mice were treated with the tobacco smoke carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and lipopolysaccharide (LPS), a potent inflammatory agent and constituent of tobacco smoke, and maintained on control diet or diet supplemented with the chemopreventive agents indole-3-carbinol (I3C) and/or silibinin (Sil). At the end of the study, mice were sacrificed and tumors on the surface of the lung were counted and gene expression levels in lung tissues were determined by RNA sequencing. RESULTS: The mean number of lung tumors induced by NNK and NNK + LPS was 5 and 15 tumors/mouse, respectively. Dietary supplementation with the combination of I3C and Sil significantly reduced the size and multiplicity (by 50 %) of NNK + LPS-induced lung tumors. Also, we found that 330, 2957, and 1143 genes were differentially regulated in mice treated with NNK, LPS, and NNK + LPS, respectively. The inflammatory response of lung tumors to LPS, as determined by the number of proinflammatory genes with altered gene expression or the level of alteration, was markedly less than that of normal lungs. Among 1143 genes differentially regulated in the NNK + LPS group, the expression of 162 genes and associated signaling pathways was significantly modulated by I3C and/or Sil + I3C. These genes include cytokines, chemokines, putative oncogenes and tumor suppressor genes and Ros1, AREG, EREG, Cyp1a1, Arntl, and Npas2. CONCLUSION: To our knowledge, this is the first report that provides insight into genes that are differentially expressed during inflammation-driven lung tumorigenesis and the modulation of these genes by chemopreventive agents.


Assuntos
Anticarcinógenos/farmacologia , Regulação Neoplásica da Expressão Gênica/genética , Inflamação/complicações , Inflamação/genética , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Animais , Carcinógenos/farmacologia , Feminino , Indóis/farmacologia , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos A , RNA/biossíntese , RNA/genética , Análise de Sequência de RNA , Silibina , Silimarina/farmacologia
4.
Mol Cancer ; 13: 260, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25471937

RESUMO

BACKGROUND: Bone morphogenetic protein (BMP) signaling is thought to play key roles in regulating the survival and maintenance of cancer stem cells (CSCs), which contribute to disease recurrences and treatment failures in many malignances, including head and neck squamous cell carcinoma (HNSCC). Intracellular BMP signaling is regulated by SMAD specific E3 ubiquitin protein ligase 1 (SMURF1) during cellular development. However, little is known about the role or regulation of BMP signaling in HNSCC CSCs. METHODS: Two CSC-like populations, CD44(high)/BMI1(high) and CD44(high)/ALDH(high), were enriched from HNSCC cell lines and evaluated for the expression of SMURF1 by qRT-PCR, flow cytometry, and immunoblotting. The activation status of BMP signaling in these populations was determined by using immunoblotting to detect phosphorylated SMAD1/5/8 (pSMAD1/5/8) levels. Knockdown of SMURF1 transcripts by RNA interference was used to assess the role of SMURF1 in BMP signaling and CSC maintenance. Loss of CSC-like phenotypes following SMURF1 knockdown was determined by changes in CD44(high) levels, cellular differentiation, and reduction in colony formation. RESULTS: Populations of enriched CSC-like cells displayed decreased levels of pSMAD1/5/8 and BMP signaling target gene ID1 while SMURF1, CD44, and BMI1 were highly expressed when compared to non-CSC populations. Stable knockdown of SMURF1 expression in CSC-like cells increased pSMAD1/5/8 protein levels, indicating the reactivation of BMP signaling pathways. Decreased expression of SMURF1 also promoted adipogenic differentiation and reduced colony formation in a three-dimensional culture assay, indicating loss of tumorigenic capacity. The role of SMURF1 and inhibition of BMP signaling in maintaining a CSC-like population was confirmed by the loss of a CD44(high) expressing subpopulation in SMURF1 knockdown cells. CONCLUSIONS: Our findings suggest that inhibition of BMP signaling potentiates the long-term survival of HNSCC CSCs, and that this inhibition is mediated by SMURF1. Targeting SMURF1 and restoring BMP signaling may offer a new therapeutic approach to promote differentiation and reduction of CSC populations leading to reduced drug resistance and disease recurrence.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/genética , Receptores de Hialuronatos/genética , Células-Tronco Neoplásicas/fisiologia , Ubiquitina-Proteína Ligases/genética , Proteínas Morfogenéticas Ósseas/genética , Diferenciação Celular/genética , Linhagem Celular Tumoral , Inativação Gênica/fisiologia , Humanos , Recidiva Local de Neoplasia/genética , Transdução de Sinais/genética , Proteínas Smad/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço
5.
Oral Oncol ; 137: 106304, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36608459

RESUMO

OBJECTIVES: In head and neck squamous cell carcinoma (HNSCC), poor prognosis and low survival rates are associated with downregulated calprotectin. Calprotectin (S100A8/A9) inhibits cancer cell migration and invasion and facilitates G2/M cell cycle arrest. We investigated whether S100A8/A9 regulates DNA damage responses (DDR) and apoptosis in HNSCC after chemoradiation. MATERIALS AND METHODS: Human HNSCC cases in TCGA were analyzed for relationships between S100A8/A9 and expression of apoptosis-related genes. Next, S100A8/A9-expressing and non-expressing carcinoma lines (two different lineages) were exposed to genotoxic agents and assessed for 53BP1 and γH2AX expression and percent of viable/dead cells. Finally, S100A8/A9-wild-type and S100A8/A9null C57BL/6j mice were treated with 4-NQO to induce oral dysplastic and carcinomatous lesions, which were compared for levels of 53BP1. RESULTS: In S100A8/A9-high HNSCC tumors, apoptosis-related caspase family member genes were upregulated, whereas genes limiting apoptosis were significantly downregulated based on TCGA analyses. After X-irradiation or camptothecin treatment, S100A8/A9-expressing carcinoma cells (i.e., TR146 and KB-S100A8/A9) showed significantly higher 53BP1 and γH2AX expression, DNA fragmentation, proportions of dead cells, and greater sensitivity to cisplatin than wild-type KB or TR146-S100A8/A9-KD cells. Interestingly, KB-S100A8/A9Δ113-114 cells showed similar 53BP1 and γH2AX levels to S100A8/A9-negative KB and KB-EGFP cells. After 4-NQO treatment, 53BP1 expression in oral lesions was significantly greater in calprotectin+/+ than S100A8/A9null mice. CONCLUSIONS: In HNSCC cells, intracellular calprotectin is strongly suggested to potentiate DDR and promote apoptosis in response to genotoxic agents. Hence, patients with S100A8/A9-high HNSCC may encounter more favorable outcomes because more tumor cells enter apoptosis with increased sensitivity to chemoradiation therapy.


Assuntos
Carcinoma , Neoplasias de Cabeça e Pescoço , Animais , Humanos , Camundongos , Apoptose , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Complexo Antígeno L1 Leucocitário/metabolismo , Camundongos Endogâmicos C57BL , Carcinoma de Células Escamosas de Cabeça e Pescoço
6.
Vet Comp Oncol ; 18(1): 128-140, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31778284

RESUMO

Adrenergic receptor (AR) expression has been demonstrated at several sites of primary and metastatic tumour growth and may influence proliferation, survival, metastasis and angiogenesis. AR antagonists like propranolol and carvedilol inhibit proliferation, induce apoptosis and synergize with chemotherapy agents in some cancers. Radiation resistance is mediated in many cells by upregulation of pro-survival pathways, which may be influenced by ARs. Studies evaluating AR antagonists combined with radiation are limited. The purpose of this study was to determine the effect of propranolol and carvedilol on viability and radiosensitivity in sarcoma cell lines. The hypothesis was that propranolol and carvedilol would increase radiosensitivity in four primary bone sarcoma cell lines. Single agent propranolol or carvedilol inhibited cell viability in all cell lines in a concentration-dependent manner. The mean inhibitory concentrations (IC50 ) for carvedilol were approximately 4-fold lower than propranolol and may be clinically relevant in vivo. Immunoblot analysis confirmed AR expression in both human and canine sarcoma cell lines; however, there was no correlation between baseline AR protein expression and radiosensitivity. Short duration treatment with carvedilol and propranolol did not significantly affect clonogenic survival. Prolonged exposure to propranolol and carvedilol significantly decreased the surviving fraction of canine osteosarcoma cells after 3Gy radiation. Based on our results and possible in vivo activity in dogs, further studies investigating the effects of carvedilol on sarcoma are warranted.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Neoplasias Ósseas/veterinária , Carvedilol/farmacologia , Doenças do Cão/tratamento farmacológico , Osteossarcoma/veterinária , Propranolol/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/radioterapia , Linhagem Celular Tumoral , Doenças do Cão/radioterapia , Cães , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/radioterapia , Sarcoma de Ewing/tratamento farmacológico
7.
Front Oncol ; 10: 614288, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33598432

RESUMO

Angiosarcoma is a rare cancer of blood vessel-forming cells with a high patient mortality and few treatment options. Although chemotherapy often produces initial clinical responses, outcomes remain poor, largely due to the development of drug resistance. We previously identified a subset of doxorubicin-resistant cells in human angiosarcoma and canine hemangiosarcoma cell lines that exhibit high lysosomal accumulation of doxorubicin. Hydrophobic, weak base chemotherapeutics, like doxorubicin, are known to sequester within lysosomes, promoting resistance by limiting drug accessibility to cellular targets. Drug synergy between the beta adrenergic receptor (ß-AR) antagonist, propranolol, and multiple chemotherapeutics has been documented in vitro, and clinical data have corroborated the increased therapeutic potential of propranolol with chemotherapy in angiosarcoma patients. Because propranolol is also a weak base and accumulates in lysosomes, we sought to determine whether propranolol enhanced doxorubicin cytotoxicity via antagonism of ß-ARs or by preventing the lysosomal accumulation of doxorubicin. ß-AR-like immunoreactivities were confirmed in primary tumor tissues and cell lines; receptor function was verified by monitoring downstream signaling pathways of ß-ARs in response to receptor agonists and antagonists. Mechanistically, propranolol increased cytoplasmic doxorubicin concentrations in sarcoma cells by decreasing the lysosomal accumulation and cellular efflux of this chemotherapeutic agent. Equivalent concentrations of the receptor-active S-(-) and -inactive R-(+) enantiomers of propranolol produced similar effects, supporting a ß-AR-independent mechanism. Long-term exposure of hemangiosarcoma cells to propranolol expanded both lysosomal size and number, yet cells remained sensitive to doxorubicin in the presence of propranolol. In contrast, removal of propranolol increased cellular resistance to doxorubicin, underscoring lysosomal doxorubicin sequestration as a key mechanism of resistance. Our results support the repurposing of the R-(+) enantiomer of propranolol with weak base chemotherapeutics to increase cytotoxicity and reduce the development of drug-resistant cell populations without the cardiovascular and other side effects associated with antagonism of ß-ARs.

8.
Vet Comp Oncol ; 18(3): 324-341, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31661586

RESUMO

Monocarboxylate transporters (MCTs) support tumour growth by regulating the transport of metabolites in the tumour microenvironment. High MCT1 or MCT4 expression is correlated with poor outcomes in human patients with head and neck squamous cell carcinoma (HNSCC). Recently, drugs targeting these transporters have been developed and may prove to be an effective treatment strategy for HNSCC. Feline oral squamous cell carcinoma (OSCC) is an aggressive and treatment-resistant malignancy resembling advanced or recurrent HNSCC. The goals of this study were to investigate the effects of a previously characterized dual MCT1 and MCT4 inhibitor, MD-1, in OSCC as a novel treatment approach for feline oral cancer. We also sought to determine the potential of feline OSCC as a large animal model for the further development of MCT inhibitors to treat human HNSCC. In vitro, MD-1 reduced the viability of feline OSCC and human HNSCC cell lines, altered glycolytic and mitochondrial metabolism and synergized with platinum-based chemotherapies. While MD-1 treatment increased lactate concentrations in an HNSCC cell line, the inhibitor failed to alter lactate levels in feline OSCC cells, suggesting an MCT-independent activity. In vivo, MD-1 significantly inhibited tumour growth in a subcutaneous xenograft model and prolonged overall survival in an orthotopic model of feline OSCC. Our results show that MD-1 may be an effective therapy for the treatment of feline oral cancer. Our findings also support the further investigation of feline OSCC as a large animal model to inform the development of MCT inhibitors and future clinical studies in human HNSCC.


Assuntos
Doenças do Gato/tratamento farmacológico , Proteínas Mitocondriais/farmacologia , Transportadores de Ácidos Monocarboxílicos/farmacologia , Neoplasias Bucais/veterinária , Carcinoma de Células Escamosas de Cabeça e Pescoço/veterinária , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/farmacologia , Animais , Gatos , Linhagem Celular Tumoral , Humanos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/genética , Transportadores de Ácidos Monocarboxílicos/genética , Neoplasias Bucais/tratamento farmacológico , Proteínas Musculares/genética , Proteínas Musculares/farmacologia , Análise de Sequência de RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico
9.
Oral Oncol ; 95: 1-10, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31345374

RESUMO

OBJECTIVES: Calprotectin (S100A8/A9) appears to function as a tumor suppressor in head and neck squamous cell carcinoma (HNSCC) and expression in the carcinoma cells and patient survival rates are directly related. We seek to characterize the suppressive role of calprotectin in HNSCC. AIMS: (1) Investigate changes in S100A8/A9 expression as oral carcinogenesis progresses and (2) determine whether intracellular calprotectin can regulate epidermal growth factor receptor (EGFR), a negative prognostic factor, in HNSCC. MATERIALS AND METHODS: Using immunohistochemistry (IHC), S100A8/A9 was analyzed in HNSCC specimens (N = 46), including well-differentiated (WD, N = 19), moderately-differentiated (MD, N = 14), poorly-differentiated (PD, N = 5) and non-keratinizing/basaloid (NK/BAS, N = 8), and premalignant epithelial dysplasias (PED, N = 16). Similarly, EGFR was analyzed in HNSCCs (N = 21). To determine whether calprotectin and EGFR expression are mechanistically linked, TR146 HNSCC cells that are S100A8/A9-expressing or silenced (shRNA) were compared for EGFR levels and caspase-3/7 activity using western blotting and immunofluorescence microscopy. RESULTS: In normal oral mucosal epithelium, S100A8/A9 stained strongly in the cytoplasm and nucleus of suprabasal cells; basal cells were consistently S100A8/A9 negative. In PED and HNSCC, S100A8/A9 expression was lower than in adjacent normal epithelial tissues (NAT) and declined progressively in WD, MD, PD and NK/BAS HNSCCs. S100A8/A9 and EGFR levels appeared inversely related, which was simulated in vitro when S100A8/A9 was silenced in TR146 cells. Silencing S100A8/A9 significantly reduced caspase-3/7 activity, whereas EGFR levels increased. CONCLUSIONS: In HNSCC, S100A8/A9 is directly associated with cellular differentiation and appears to promote caspase-3/7-mediated cleavage of EGFR, which could explain why patients with S100A8/A9-high tumors survive longer.


Assuntos
Neoplasias de Cabeça e Pescoço/patologia , Complexo Antígeno L1 Leucocitário/metabolismo , Mucosa Bucal/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Células Epiteliais/patologia , Receptores ErbB/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Complexo Antígeno L1 Leucocitário/genética , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/citologia , Proteólise , RNA Interferente Pequeno/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Taxa de Sobrevida , Adulto Jovem
10.
Oncotarget ; 8(4): 6446-6460, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28031536

RESUMO

Previous studies suggest beta-adrenergic receptor (ß-AR) antagonists (ß-blockers) decrease breast cancer progression, tumor metastasis, and patient mortality; however the mechanism for this is unknown. Immunohistochemical analysis of normal and malignant breast tissue revealed overexpression of ß1-AR and ß3-AR in breast cancer. A retrospective cross-sectional study of 404 breast cancer patients was performed to determine the effect of ß-blocker usage on tumor proliferation. Our analysis revealed that non-selective ß-blockers, but not selective ß-blockers, reduced tumor proliferation by 66% (p < 0.0001) in early stage breast cancer compared to non-users. We tested the efficacy of propranolol on an early stage breast cancer patient, and quantified the tumor proliferative index before and after treatment, revealing a propranolol-mediated 23% reduction (p = 0.02) in Ki67 positive tumor cells over a three-week period. The anti-proliferative effects of ß-blockers were measured in a panel of breast cancer lines, demonstrating that mammary epithelial cells were resistant to propranolol, and that most breast cancer cell lines displayed dose dependent viability decreases following treatment. Selective ß-blockers alone or in combination were not as effective as propranolol at reducing breast cancer cell proliferation. Molecular analysis revealed that propranolol treatment of the SK-BR-3 breast cancer line, which showed high sensitivity to beta blockade, led to a reduction in Ki67 protein expression, decreased phosphorylation of the mitogenic signaling regulators p44/42 MAPK, p38 MAPK, JNK, and CREB, increased phosphorylation of the cell survival/apoptosis regulators AKT, p53, and GSK3ß. In conclusion, use of non-selective ß-blockers in patients with early stage breast cancer may lead to decreased tumor proliferation.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Propranolol/uso terapêutico , Adulto , Idoso , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Estudos Transversais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Antígeno Ki-67/metabolismo , Pessoa de Meia-Idade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estadiamento de Neoplasias , Fosforilação , Receptores Adrenérgicos beta 1/efeitos dos fármacos , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 3/efeitos dos fármacos , Receptores Adrenérgicos beta 3/metabolismo , Estudos Retrospectivos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Resultado do Tratamento
11.
Oncotarget ; 7(12): 14029-47, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26883112

RESUMO

Calprotectin (S100A8/A9), a heterodimeric protein complex of calcium-binding proteins S100A8 and S100A9, plays key roles in cell cycle regulation and inflammation, with potential functions in squamous cell differentiation. While upregulated in many cancers, S100A8/A9 is downregulated in squamous cell carcinomas of the cervix, esophagus, and the head and neck (HNSCC). We previously reported that ectopic S100A8/A9 expression inhibits cell cycle progression in carcinoma cells. Here, we show that declining expression of S100A8/A9 in patients with HNSCC is associated with increased DNA methylation, less differentiated tumors, and reduced overall survival. Upon ectopic over-expression of S100A8/A9, the cancer phenotype of S100A8/A9-negative carcinoma cells was suppressed in vitro and tumor growth in vivo was significantly decreased. MMP1, INHBA, FST, LAMC2, CCL3, SULF1, and SLC16A1 were significantly upregulated in HNSCC but were downregulated by S100A8/A9 expression. Our findings strongly suggest that downregulation of S100A8/A9 through epigenetic mechanisms may contribute to increased proliferation, malignant transformation, and disease progression in HNSCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Animais , Apoptose , Carcinoma de Células Escamosas/patologia , Movimento Celular , Proliferação de Células , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estadiamento de Neoplasias , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Periodontol ; 76(11 Suppl): 2101-5, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16277582

RESUMO

BACKGROUND: Pathogenic mechanisms in infective endocarditis, disseminated intravascular coagulation, and cardiovascular events involve the aggregation of platelets into thrombi. Attendant infection by oral bacteria contributes to these diseases. We have been studying how certain oral streptococci induce platelet aggregation in vitro and in vivo. Streptococcus sanguis expresses a platelet aggregation-associated protein (PAAP), which contributes little to adhesion to platelets. When specific antibodies or peptides block PAAP, S. sanguis fails to induce platelet aggregation in vitro or in vivo. METHODS: We used subtractive hybridization to identify the gene encoding for PAAP. RESULTS: After subtraction of strain L50 (platelet aggregation-negative), four strain 133-79 specific sequences were characterized. Sequence agg4 encoded a putative collagen-binding protein (CbpA), which was predicted to contain two PAAP collagen-like octapeptide sequences. S. sanguis CbpA- mutants were constructed and tested for induction of platelet aggregation in vitro. Platelet aggregation was substantially inhibited when compared to the wild-type using platelet-rich plasma from the principal donor, but adhesion was unaffected. Other donor platelets responded normally to the CbpA- strain, suggesting additional mechanisms of response to S. sanguis. In contrast, CshA- and methionine sulfoxide reductase-negative (MsrA-) strains neither adhered nor induced platelet aggregation. CONCLUSIONS: CbpA was suggested to contribute to site 2 interactions in our two-site model of platelet aggregation in response to S. sanguis. Platelet polymorphisms were suggested to contribute to the thrombogenic potential of S. sanguis.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Doenças Cardiovasculares/microbiologia , Streptococcus sanguis/genética , Streptococcus sanguis/patogenicidade , Trombose/microbiologia , Sequência de Aminoácidos , Endocardite Bacteriana/microbiologia , Genes Bacterianos , Humanos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Adesividade Plaquetária/genética , Agregação Plaquetária/genética , Polimorfismo Genético
13.
Vasc Cell ; 6: 20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295160

RESUMO

BACKGROUND: Human angiosarcoma and canine hemangiosarcoma are thought to arise from vascular tissue or vascular forming cells based upon their histological appearance. However, recent evidence indicates a hematopoietic or angioblastic cell of origin for these tumors. In support of this idea, we previously identified an endothelial-myeloid progenitor cell population with high expression of endothelial cell markers and the myeloid cell marker, colony stimulating factor 1 receptor (CSF-1R). Here, we further characterized these cells to better understand how their cellular characteristics may impact current therapeutic applications. METHODS: We performed cell enrichment studies from canine hemangiosarcoma and human angiosarcoma cell lines to generate cell populations with high or low CSF-1R expression. We then utilized flow cytometry, side population and cell viability assays, and fluorescence based approaches to elucidate drug resistance mechanisms and to determine the expression of hematopoietic and endothelial progenitor cell markers. RESULTS: We demonstrated that cells with high CSF-1R expression enriched from hemangiosarcoma and angiosarcoma cell lines are more drug resistant than cells with little or no CSF-1R expression. We determined that the increased drug resistance may be due to increased ABC transporter expression in hemangiosarcoma and increased drug sequestration within cellular lysosomes in both hemangiosarcoma and angiosarcoma. CONCLUSIONS: We identified drug sequestration within cellular lysosomes as a shared drug resistance mechanism in human and canine vascular sarcomas marked by high CSF-1R expression. Taken together, our results demonstrate that studies in highly prevalent canine hemangiosarcoma may be especially relevant to understanding and addressing drug resistance mechanisms in both the canine and human forms of this disease.

14.
PLoS One ; 8(7): e69395, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874958

RESUMO

Malignant transformation results in abnormal cell cycle regulation and uncontrolled growth in head and neck squamous cell carcinoma (HNSCC) and other cancers. S100A8/A9 (calprotectin) is a calcium-binding heterodimeric protein complex implicated in cell cycle regulation, but the specific mechanism and role in cell cycle control and carcinoma growth are not well understood. In HNSCC, S100A8/A9 is downregulated at both mRNA and protein levels. We now report that downregulation of S100A8/A9 correlates strongly with a loss of cell cycle control and increased growth of carcinoma cells. To show its role in carcinogenesis in an in vitro model, S100A8/A9 was stably expressed in an S100A8/A9-negative human carcinoma cell line (KB cells, HeLa-like). S100A8/A9 expression increases PP2A phosphatase activity and p-Chk1 (Ser345) phosphorylation, which appears to signal inhibitory phosphorylation of mitotic p-Cdc25C (Ser216) and p-Cdc2 (Thr14/Tyr15) to inactivate the G2/M Cdc2/cyclin B1 complex. Cyclin B1 expression then downregulates and the cell cycle arrests at the G2/M checkpoint, reducing cell division. As expected, S100A8/A9-expressing cells show both decreased anchorage-dependent and -independent growth and mitotic progression. Using shRNA, silencing of S100A8/A9 expression in the TR146 human HNSCC cell line increases growth and survival and reduces Cdc2 inhibitory phosphorylation at Thr14/Tyr15. The level of S100A8/A9 endogenous expression correlates strongly with the reduced p-Cdc2 (Thr14/Tyr14) level in HNSCC cell lines, SCC-58, OSCC-3 and UMSCC-17B. S100A8/A9-mediated control of the G2/M cell cycle checkpoint is, therefore, a likely suppressive mechanism in human squamous cell carcinomas and may suggest new therapeutic approaches.


Assuntos
Calgranulina A/genética , Calgranulina B/genética , Carcinoma de Células Escamosas/genética , Divisão Celular/genética , Fase G2/genética , Neoplasias de Cabeça e Pescoço/genética , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Pontos de Checagem da Fase G2 do Ciclo Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Modelos Biológicos , Ligação Proteica , Proteína Fosfatase 2/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço
15.
Microbiology (Reading) ; 155(Pt 1): 165-173, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19118357

RESUMO

The putative two-component system BfrAB is involved in Streptococcus gordonii biofilm development. Here, we provide evidence that BfrAB regulates the expression of bfrCD and bfrEFG, which encode two ATP-binding cassette (ABC) transporters, and bfrH, which encodes a CAAX amino-terminal protease family protein. BfrC and BfrE are ATP-binding proteins, and BfrD, BfrF and BfrG are homologous membrane-spanning polypeptides. Similarly, BfrABss, the BfrAB homologous system in Streptococcus sanguinis, controls the expression of two bfrCD-homologous operons (bfrCDss and bfrXYss), a bfrH-homologous gene (bfrH1ss) and another CAAX amino-terminal protease family protein gene (bfrH2ss). Furthermore, we demonstrate that the purified BfrA DNA-binding domain from S. gordonii binds to the promoter regions of bfrCD, bfrEFG, bfrH, bfrCDss, bfrXYss and bfrH1ss in vitro. Finally, we show that the BfrA DNA-binding domain recognizes a conserved DNA motif with a consensus sequence of TTTCTTTAGAAATATTTTAGAATT. These data suggest, therefore, that S. gordonii BfrAB controls biofilm formation by regulating multiple ABC-transporter systems.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais , Streptococcus gordonii/crescimento & desenvolvimento , Streptococcus sanguis/crescimento & desenvolvimento , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Biofilmes/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Óperon , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Análise de Sequência de DNA , Streptococcus gordonii/genética , Streptococcus gordonii/metabolismo , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismo
16.
Antiinflamm Antiallergy Agents Med Chem ; 8(4): 290-305, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-20523765

RESUMO

The calgranulins are a subgroup of proteins in the S100 family (calgranulin A, S100A8; calgranulin B, S100A9 and calgranulin C, S100A12) that provide protective anti-infective and anti-inflammatory functions for the mammalian host. In this review, we discuss the structure-function relationships whereby S100A8 and S100A9, and for comparison, S100A12, provide intra- and extracellular protection during the complex interplay between infection and inflammation and how the calgranulins are regulated to optimally protect the host. Ideally located to support epithelial barrier function, calprotectin, a complex of S100A8/S100A9, is expressed in squamous mucosal keratinocytes and innate immune cells present at mucosal surfaces. The calgranulins are also abundantly produced in neutrophils and monocytes, whereas expression is induced in epidermal keratinocytes, gastrointestinal epithelial cells and fibroblasts during inflammation. The calgranulins show species-specific expression and function. For example, S100A8 is chemotactic in rodents but not in humans. In humans, S100A12 appears to serve as a functional chemotactic homolog to murine S100A8. Transition metal-binding and oxidation sites within calgranulins are able to create structural changes that may orchestrate new protective functions or binding targets. The calgranulins thus appear to adopt a variety of roles to protect the host. In addition to serving as a leukocyte chemoattractant, protective functions include oxidant scavenging, antimicrobial activity, and chemokine-like activities. Each function may reflect the concentration of the calgranulin, post-transcriptional modifications, oligomeric forms, and the proximal intracellular or extracellular environments. Calprotectin and the calgranulins are remarkable as multifunctional proteins dedicated to protecting the intra- and extracellular environments during infection and inflammation.

17.
J Bacteriol ; 189(8): 3106-14, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17277052

RESUMO

Competition between pioneer colonizing bacteria may determine polymicrobial succession during dental plaque development, but the ecological constraints are poorly understood. For example, more Streptococcus sanguinis than Streptococcus gordonii organisms are consistently isolated from the same intraoral sites, yet S. gordonii fails to be excluded and survives as a species over time. To explain this observation, we hypothesized that S. gordonii could compete with S. sanguinis to adhere to saliva-coated hydroxyapatite (sHA), an in vitro model of the tooth surface. Both species bound similarly to sHA, yet 10- to 50-fold excess S. gordonii DL1 reduced binding of S. sanguinis SK36 by 85 to >95%. S. sanguinis, by contrast, did not significantly compete with S. gordonii to adhere. S. gordonii competed with S. sanguinis more effectively than other species of oral streptococci and depended upon the salivary film on HA. Next, putative S. gordonii adhesins were analyzed for contributions to interspecies competitive binding. Like wild-type S. gordonii, isogenic mutants with mutations in antigen I/II polypeptides (sspAB), amylase-binding proteins (abpAB), and Csh adhesins (cshAB) competed effectively against S. sanguinis. By contrast, an hsa-deficient mutant of S. gordonii showed significantly reduced binding and competitive capabilities, while these properties were restored in an hsa-complemented strain. Thus, Hsa confers a selective advantage to S. gordonii over S. sanguinis in competitive binding to sHA. Hsa expression may, therefore, serve as an environmental constraint against S. sanguinis, enabling S. gordonii to persist within the oral cavity, despite the greater natural prevalence of S. sanguinis in plaque and saliva.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Transporte/metabolismo , Durapatita/metabolismo , Saliva/metabolismo , Streptococcus/química , Streptococcus/fisiologia , Aderência Bacteriana , Ligação Competitiva , Hemaglutininas Virais , Ligação Proteica , Especificidade da Espécie , Streptococcus/classificação
18.
J Periodontol ; 76 Suppl 11S: 2101-2105, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29539047

RESUMO

BACKGROUND: Pathogenic mechanisms in infective endocarditis, disseminated intravascular coagulation, and cardiovascular events involve the aggregation of platelets into thrombi. Attendant infection by oral bacteria contributes to these diseases. We have been studying how certain oral streptococci induce platelet aggregation in vitro and in vivo. Streptococcus sanguis expresses a platelet aggregation-associated protein (PAAP), which contributes little to adhesion to platelets. When specific antibodies or peptides block PAAP, S. sanguis fails to induce platelet aggregation in vitro or in vivo. METHODS: We used subtractive hybridization to identify the gene encoding for PAAP. RESULTS: After subtraction of strain L50 (platelet aggregation-negative), four strain 133-79 specific sequences were characterized. Sequence agg4 encoded a putative collagen-binding protein (CbpA), which was predicted to contain two PAAP collagen-like octapeptide sequences. S. sanguis CbpA- mutants were constructed and tested for induction of platelet aggregation in vitro. Platelet aggregation was substantially inhibited when compared to the wild-type using platelet-rich plasma from the principal donor, but adhesion was unaffected. Other donor platelets responded normally to the CbpA- strain, suggesting additional mechanisms of response to S. sanguis. In contrast, CshA- and methionine sulfoxide reductase-negative (MsrA-) strains neither adhered nor induced platelet aggregation. CONCLUSIONS: CbpA was suggested to contribute to site 2 interactions in our two-site model of platelet aggregation in response to S. sanguis. Platelet polymorphisms were suggested to contribute to the thrombogenic potential of S. sanguis.

19.
Infect Immun ; 73(6): 3351-7, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15908361

RESUMO

SspA and SspB (antigen I/II family proteins) can bind Streptococcus gordonii to other oral bacteria and also to salivary agglutinin glycoprotein, a constituent of the salivary film or pellicle that coats the tooth. To learn if SspA and SspB are essential for adhesion and initial biofilm formation on teeth, S. gordonii DL1 was incubated with saliva-coated hydroxyapatite (sHA) for 2 h in Todd-Hewitt broth with 20% saliva to develop initial biofilms. Sessile cells attached to sHA, surrounding planktonic cells, and free-growing cells were recovered separately. Free-growing cells expressed more sspA-specific mRNA and sspB-specific mRNA than sessile cells. Free-growing cells expressed the same levels of sspA and sspB as planktonic cells. Surprisingly, an SspA(-) SspB(-) mutant strain showed 2.2-fold greater biofilm formation on sHA than wild-type S. gordonii DL1. To explain this observation, we tested the hypothesis that inactivation of sspA and sspB genes altered the expression of other adhesin genes during initial biofilm formation in vitro. When compared to wild-type cells, expression of scaA and abpB was significantly up-regulated in the SspA(-) SspB(-) strain in sessile, planktonic, and free-growing cells. Consistent with this finding, ScaA antigen was also overexpressed in planktonic and free-growing SspA(-) SspB(-) cells compared to the wild type. SspA/B adhesins, therefore, were strongly suggested to be involved in the regulation of multiple adhesin genes.


Assuntos
Adesinas Bacterianas/genética , Adesinas Bacterianas/fisiologia , Biofilmes , Regulação Bacteriana da Expressão Gênica , Streptococcus/genética , Aderência Bacteriana , Durapatita , Humanos , Plâncton/metabolismo
20.
Infect Immun ; 72(6): 3489-94, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15155656

RESUMO

Streptococcus gordonii is a pioneer colonizer of the teeth, contributing to the initiation of the oral biofilm called dental plaque. To identify genes that may be important in biofilm formation, a plasmid integration library of S. gordonii V288 was used. After screening for in vitro biofilm formation on polystyrene, a putative biofilm-defective mutant was isolated. In this mutant, pAK36 was inserted into a locus encoding a novel two-component system (bfr [biofilm formation related]) with two cotranscribed genes that form an operon. bfrA encodes a putative response regulator, while bfrB encodes a receptor histidine kinase. The bfr mutant and wild-type strain V288 showed similar growth rates in Todd-Hewitt broth (THB). A bfr-cat fusion strain was constructed. During growth in THB, the reporter activity (chloramphenicol acetyltransferase) was first detected in mid-log phase and reached a maximum in stationary phase, suggesting that transcription of bfr was growth stage dependent. After being harvested from THB, the bfr mutant adhered less effectively than did wild-type strain V288 to saliva-coated hydroxyapatite (sHA). To simulate pioneer colonization of teeth, S. gordonii V288 was incubated with sHA for 4 h in THB with 10% saliva to develop biofilms. RNA was isolated, and expression of bfrAB was estimated. In comparison to that of cells grown in suspension (free-growing cells), bfr mRNA expression by sessile cells on sHA was 1.8-fold greater and that by surrounding planktonic cells was 3.5-fold greater. Therefore, bfrAB is a novel two-component system regulated in association with S. gordonii biofilm formation in vitro.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Transdução de Sinais , Streptococcus/crescimento & desenvolvimento , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Durapatita , Humanos , Dados de Sequência Molecular , Óperon , Poliestirenos , Saliva/microbiologia , Streptococcus/genética , Streptococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA