RESUMO
BACKGROUND: Treated or coated sutures promise to prevent contamination of wounds. PURPOSE: The purpose of the study was to coat surgical sutures with a new quaternary ammonium silane (QAS) antimicrobial compound at two different application temperatures and then to evaluate the resulting structural, physical, mechanical, and biological properties. STUDY DESIGN, SETTING, SAMPLE: In vitro and in vivo studies were conducted using male albino Wistar rats approved by the Joint Ethical Committee of IMU and Postgraduate Medical Institute, Lahore. Only suture samples, coated uniformly with verified presence of the compound and of adequate length were used. Samples which were not coated uniformly and with inadequate length or damaged were excluded. PREDICTOR VARIABLE: Predictor variables were sutures with and without QAS coatings and different temperatures. Sutures were coated with QAS at 0.5 and 1.0% wt/vol using the dip coating technique and sutures with and without QAS coating were tested at 25 and 40 °C temperatures. MAIN OUTCOME VARIABLE(S): Outcome variables of structural and physico-mechanical properties of QAS-coated and non-coated sutures were measured using Fourier transform infrared spectroscopy (for structural changes), confocal laser and scanning electron (for diameter changes), and tensile strength/modulus (for mechanical testing). Biologic outcome variables were tested (bacterial viability); macrophage cultures from Wistar rats were tested (M1/M2 polarization detecting IL-6 and IL-10). Macrophage cells were analyzed with CD80+ (M1) and CD163+ (M2). Chemotaxis index was calculated as a ratio of quantitative fluorescence of cells. COVARIATES: Not applicable. ANALYSES: Ordinal data among groups were compared using the Wilcoxon Mann-Whitney U test along with the comparison of histological analysis using the Wilcoxon Sign-rank test (P < .05). RESULTS: Fourier transform infrared spectroscopy peak at 1490 cm-1 confirmed the presence of QAS on suture's surfaces with a significant increase (P < .05) in diameter (0.99 ± 0.5-mm) and weight (0.77 ± 0.02-mg) observed for 1% QAS groups treated at 40 °C. Non-coated samples heated at 25 °C had significantly (P < .05) less diameters (0.22 ± 0.03-mm) and weights (0.26 ± 0.06-mg). Highest tensile strength/modulus was observed for 0.5% QAS-coated samples which also had significantly higher antibacterial characteristics than other sutures (P < .05). QAS-coated sutures significantly increased M1 and M2 markers. CONCLUSION AND RELEVANCE: QAS coating conferred antibacterial action properties without compromising the physical and mechanical properties of the suture.
Assuntos
Materiais Revestidos Biocompatíveis , Ratos Wistar , Silanos , Suturas , Animais , Ratos , Masculino , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Silanos/química , Silanos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Teste de Materiais , Resistência à Tração , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/química , Anti-Infecciosos/farmacologia , Microscopia Eletrônica de Varredura , Microscopia Confocal , Propriedades de SuperfícieRESUMO
OBJECTIVES: The aim of this review to overview three-dimensional (3D) printing technologies available for different dental disciplines, considering the applicability of such technologies and materials development. MATERIALS AND METHODS: Source Arksey and O'Malley's five stages framework using PubMed, EMBASE, and Scopus (Elsevier) databases managed this review. Papers focusing on 3D printing in dentistry and written in English were screened. Scientific productivity by the number of publications, areas of interest, and the focus of the investigations in each dental discipline were extracted. RESULTS: Nine hundred thirty-four studies using 3D printing in dentistry were assessed. Limited clinical trials were observed, especially in Restorative, endodontics, and pediatric dentistry. Laboratory or animal studies are not reliable for clinical success, suggesting that clinical trials are a good approach to validate the new methods' outcomes and ensure that the benefits outweigh the risk. The most common application for 3D printing technologies is to facilitate conventional dental procedures. CONCLUSIONS: The constantly improving quality of 3D printing applications has contributed to increasing the popularity of these technologies in dentistry; however, long-term clinical studies are necessary to assist in defining standards and endorsing the safe application of 3D printing in dental practice. CLINICAL RELEVANCE: The recent progress in 3D materials has improved dental practice capabilities over the last decade. Understanding the current status of 3D printing in dentistry is essential to facilitate translating its applications from laboratory to the clinical setting.
Assuntos
Endodontia , Impressão Tridimensional , Humanos , Odontopediatria , Assistência OdontológicaRESUMO
The objective of this study was to synthesize a novel choline hydroxide ionic liquid-based tooth bleaching gel. Ionic liquid-based gels were synthesized and characterized using FTIR along with pH testing. Tooth sample preparation was carried out in line with ISO 28399:2020. The effects of synthesized gels on tooth samples were tested. Tooth samples were stained and grouped into three experimental groups: EAI (22% choline hydroxide gel), EAII (44% choline hydroxide gel), and EB (choline citrate gel) and two control groups: CA (commercial at-home 16% carbamide peroxide gel) and CB (deionized water). The tooth color analysis, which included shade matching with the Vitapan shade guide (n = 2), and digital colorimetric analysis (n = 2) were evaluated. The surface characteristics and hardness were analyzed with 3D optical profilometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), and Microhardness testing (n = 3), respectively. The tooth color analysis (Vitapan shade guide) revealed that all the tooth samples treated with synthesized choline citrate gel (EB) showed an A1 shade as compared to the other four groups, giving a range of shades. An analysis of the ΔE values from digital colorimetry; EAI, EAII, CA, and CB showed ΔE values in a range that was clinically perceptible at a glance. However, EB showed the highest value of ΔE. The mean microhardness values for the five groups showed that the effects of three experimental gels i.e., 44% choline hydroxide, 22% choline hydroxide, and choline citrate, on the microhardness of the tooth samples were similar to that of the positive control, which comprised commercial at-home 16% carbamide peroxide gel. SEM with EDX of three tested subgroups was closely related in surface profile, elemental composition, and Ca/P ratio. The roughness average values from optical profilometry of four tested subgroups lie within approximately a similar range, showing a statistically insignificant difference (p > 0.05) between the tested subgroups. The synthesized novel experimental tooth bleaching gels displayed similar tooth bleaching actions without any deleterious effects on the surface characteristics and microhardness of the treated tooth samples when compared with the commercial at-home tooth bleaching gel.
Assuntos
Líquidos Iônicos , Clareamento Dental , Clareamento Dental/métodos , Peróxido de Carbamida , Peróxidos/química , Ureia/química , Análise Custo-Benefício , Géis , Peróxido de Hidrogênio/químicaRESUMO
Erosive beverages cause dissolution of natural teeth and intra-oral restorations, resulting in surface characteristic changes, particularly roughness and degradation. The purpose of this study was to evaluate the surface roughness and topography of a dental ceramic following immersion in locally available erosive solutions. A total of 160 disc specimens of a nano-fluorapatite type ceramic (12 mm diameter and 2 mm thickness) were fabricated and equally distributed into two groups (n = 80) and then evenly distributed among the following five testing groups (n = 16): lemon juice, citrate buffer solution, 4% acetic acid, soft cola drink, and distilled water which served as a control. The surface roughness (Ra) and topography were evaluated using a profilometer and scanning electron microscope at baseline, 24 h, 96 h, and 168 h respectively. Data were analyzed using ANOVA and Tukey's multiple comparisons (p ≤ 0.05). Surface changes were observed upon exposure to all acidic beverages except distilled water. Amongst all immersion media, 4% acetic acid produced the most severe surface roughness across all time periods (i.e., baseline, 24 h, 96 h, and 168 h). A statistically significant difference in the surface roughness values between all immersion media and across all four time intervals was observed. Erosive agents had a negative effect on the surface roughness and topography of the tested ceramic. The surface roughness increased with increased storage time intervals.
Assuntos
Bebidas , Cerâmica , Teste de Materiais , Propriedades de Superfície , ÁguaRESUMO
A novel way was adopted to graft zinc oxide (ZnO) with urethane-modified dimethacrylate (UDMA) in order to utilize them as reinforcing agents in resin-based dental composites. Experimental novel composites were synthesized having UDMA-grafted and nongrafted ZnO, at a concentration of 0 wt.%, 5 wt.%, and 10 wt.%. The same concentrations of ZnO were also incorporated in Filtek Z250 XT (3 M ESPE, USA). The antibacterial behavior was evaluated against Streptococcus mutans by direct-contact test at one, three, and seven days of incubation. The compressive strength and Vickers microhardness were tested as per ISO 9917 and ISO/CD6507-1, respectively. For abrasive wear resistance, mass loss and roughness average after tooth-brushing cycles of 24,000 at custom-made tooth-brushing simulator were evaluated using noncontact profilometer. Data analysis was carried out using post hoc Tucky's test and nonparametric Kruskal-Wallis test. Direct contact test revealed that the antibacterial potential of novel and commercial composites was increased with an increase in the concentration of grafted ZnO as compared with nongrafted, whereby the potential was the highest at day seven. There was a significant decrease in compressive strength and Vickers hardness of commercial composites on addition of grafted ZnO while there was no significant difference in the strength of experimental novel composite. The abrasive wear of commercial and experimental composites was within clinical limits. Low-temperature flow-synthesis method was successfully employed to synthesize grafted and nongrafted ZnO. The UDMA-grafted ZnO can be incorporated into dental composites without decreasing their strength and these composites can be used to combat secondary caries.
Assuntos
Resinas Acrílicas/química , Antibacterianos/química , Resinas Compostas/química , Metacrilatos/química , Poliuretanos/química , Uretana/química , Óxido de Zinco/química , Antibacterianos/farmacologia , Força Compressiva , Simulação por Computador , Teste de Materiais , Ácidos Polimetacrílicos , Ligação Proteica , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Streptococcus mutans/metabolismo , Estresse Mecânico , Propriedades de Superfície , Temperatura , Termogravimetria , Difração de Raios XRESUMO
OBJECTIVE: To review different modes of application of hydroxyapatite for treatment of dentin hypersensitivity via dentinal tubule occlusion. METHODS: Literature search for the systematic review was done using key words 'hydroxyapatite and dentin hypersensitivity', 'hydroxyapatite and dentinal tubule occlusion', 'hydroxyapatite and dentin permeability', and 'dentinal tubule occlusion' on Pubmed, Science Direct and Web of Science databases for articles published over 10 years, from 2009 to 2018. RESULTS: Of the 132 research articles initially identified, 97(73.5%) related to the 10-year study period. After detailed screening, 16(16.5%) studies were included. The results of in vitro studies showed that application of hydroxyapatite caused dentinal tubule occlusion leading to reduction in dentin permeability and reduction in dentin hypersensitivity. CONCLUSIONS: Hydroxyapatite has the potential to reduce dentin hypersensitivity via dentinal tubule occlusion within 2-8 weeks.
Assuntos
Sensibilidade da Dentina , Dentina , Sensibilidade da Dentina/tratamento farmacológico , Durapatita , Humanos , Microscopia Eletrônica de VarreduraRESUMO
OBJECTIVE: To compare the in vitro potential of dentin tubule occlusion of two novel experimental dentifrices consisting of fluoride containing bioactive glass (BG) with zinc oxide nanoparticles. MATERIALS AND METHODS: Forty-eight dentin discs (n = 48) were divided into 6 groups (n = 8), based on their brushing dentifrices: Group 1 = artificial saliva (AS; control); Group 2 = fluoride dentifrice (Colgate Palmolive©, UK); Group 3 = experimental nonactive agent dentifrice; Group 4 = experimental dentifrice with 1.5% BG; Group 5 = experimental dentifrice with 4% BG; and Group 6 = BioMinF© dentifrice. Postbrushing, the discs were subjected to acidic challenge with 6% wt citric acid (pH = 4.0) for 1 min. Scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) spectroscopy were performed pre- and post-citric acid challenges, and percentages of tubule occlusion assessed. RESULTS: SEM micrographs of group 1 (AS) show no tubule occlusion (0%), whereas those of groups 2 and 3 show partial tubule occlusion (25 to <50% of tubules occluded). The SEM micrographs of dentifrices containing fluoride-BG (groups 4, 5, and 6) show that most of the tubules (>50 and <100%) were occluded. For all the groups (excluding group 1), pre- and post-citric acid challenge values are statistically significant (p < 0.05). EDX analysis reveals the presence of zinc in experimental dentifrices only. CONCLUSION: The results of novel experimental dentifrices are comparable to those of the BioMinF©, in terms of tubule occlusion. Dentifrices containing BG could serve as an alternative in dentin sensitivity management.
Assuntos
Dentifrícios/farmacologia , Dentina/efeitos dos fármacos , Fluoretos/farmacologia , Óxido de Zinco/farmacologia , Vidro , Humanos , Microscopia Eletrônica de Varredura , NanopartículasRESUMO
OBJECTIVE: To investigate the effect of natural crosslinkers proanthocyanidin, genipin and glutaraldehyde on shear bond strength at the composite resin-dentin interface . METHODS: The in-vitro study was conducted at the Postgraduate Medical Institute, Lahore, Pakistan, from June to September 2018. Exposed dentin surfaces of extracted teeth were conditioned and randomly divided into proanthocyanidin, genipin, glutaraldehyde and control groups according to the type of surface treatment. The dentin surfaces were treated with 6.5% of primers proanthocyanidin, genipin, glutaraldehyde in the relevant groups, while teeth in the control group did not receive any primer application. After thorough rinsing, surfaces of all teeth were restored with a bonding agent and a restorative composite. After 24h, shear bond strength was tested at the Pakistan Council of Scientific and Industrial Research laboratories in Lahore. Pattern of fractures and quality of interface were investigated microscopically at the Lahore campus of COMSATS University, Islamabad. Data was analysed using SPSS 22. RESULTS: Of the 80 teeth, there were 20(25%) in each of the 4 groups. Surface treatment in the three intervention groups significantly raised the shear bond strength at the composite resin-dentin interface compared to the control group (p<0.05). CONCLUSIONS: Chemical modification with collagen crosslinkers improved bond strength at the composite resin-dentin interface.
Assuntos
Adesivos Dentinários , Dentina , Resinas Compostas , Humanos , Teste de Materiais , Paquistão , Resistência ao CisalhamentoRESUMO
OBJECTIVE: To compare effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in removing collagen fiber network covering dentinal tubules of human teeth. MATERIALS AND METHODS: Eighteen dentin discs were divided in three groups; Gp 1: discs received no treatment (control), Gp 2: discs etched with 17% EDTA (pH = 7.1), and Gp 3: discs etched with 6 wt% citric acid (pH = 4.0). Scanning electron microscopy (SEM) was performed to assess collagen fiber removal and X-ray diffraction (XRD) was implemented to analyse crystal peaks of discs. RESULTS: The SEM analysis demonstrated more collagen removal with EDTA treatment compared to citric acid treated specimens. Grade 6 (81% to 100% fiber removal) was mostly achieved for Gp 2 samples whereas grade 2 (1% to 20% fiber removal) was mostly achieved for Gp 3 samples and inter-group comparisons between these groups were statistically significant (p < 0.05). X-ray diffractogram of control and experimental samples demonstrated absence of calcite phase in experimental groups. The change in peak shapes and intensities were observed and citric acid treated samples revealed more intense peaks than EDTA group. CONCLUSION: Our study found 17% EDTA to be more effective in removing collagen fibers when matched with 6% citric acid.
RESUMO
Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1-100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties.
Assuntos
Cerâmica/química , Cimentos Dentários/química , Cimentos de Ionômeros de Vidro/química , Nanopartículas/química , HumanosRESUMO
This study investigates advanced data collection methodologies and their implications for understanding employee and customer behavior within specific locations. Employing a comprehensive multi-criteria decision-making framework, we evaluate various technologies based on four distinct criteria and four technological alternatives. To identify the most effective technological solution, we employ the q-spherical fuzzy rough TOPSIS method, integrating three key parameters: lower set approximation, upper set approximation, and parameter q (where q ≥ 1). Our novel approach combines the TOPSIS method with q-spherical fuzzy rough set theory, providing deeper insights into data-driven decision-making processes in corporate environments. By comparing our proposed framework with existing multi-criteria decision-making methodologies, we demonstrate its strength and competitiveness. This research contributes to enhancing decision-making capabilities in corporate settings and beyond.
RESUMO
q-spherical fuzzy rough set (q-SFRS) is also one of the fundamental concepts for addressing more uncertainties in decision problems than the existing structures of fuzzy sets, and thus its implementation was more substantial. The well-known sine trigonometric function maintains the periodicity and symmetry of the origin in nature and thus satisfies the expectations of the experts over the multi-parameters. Taking this feature and the significance of the q-SFRSs into consideration, the main objective of the article is to describe some reliable sine trigonometric laws for SFSs. Associated with these laws, we develop new average and geometric aggregation operators to aggregate the q-spherical fuzzy rough numbers. Then, we presented a group decision-making strategy to address the multi-attribute group decision-making problem using the developed aggregation operators. To verify the value of the defined operators, a MAGDM strategy is provided along with applications for selecting a Cloud Service Provider and a Digital Transformation Vendor for digital transformation. Moreover, a comparative study is also performed to present the effectiveness of the developed approach.
RESUMO
Over the last few years, considerable attention has been devoted to glass fiber-reinforced composites (GFRCs) in the field of dentistry. Glass fiber-reinforced composites are useful in prosthodontics, endodontics, restorative dentistry, orthodontics, and periodontics. This study considered various aspects related to GFRCs to assess the publications and citations on the subject from 1998 to 2022.A bibliometric method of analysis was adopted to conduct the study. The relevant papers published within the established time frame were identified. A document-type filter was applied to retrieve only those results that were peer-reviewed. The most influential authors, journals, institutions, and countries were identified, as indicated by the number of citations, as well as the most frequently used keywords.The findings of the bibliometric analysis revealed that the first article on GFRCs in the context of dentistry was published in 1998. The greatest number of papers on this subject was published in 2011 (n = 51), while the number of citations reached its peak in 2008 (n = 1,546). The University of Turku in Finland published the greatest number of articles, whereas Brazil was the most prolific country, producing the highest number of publications on dental fiber. Researchers from Brazil, Italy and Germany mainly collaborated with researchers from other countries, including the USA and Finland. The analysis revealed that publications of multiple authors were more likely to be cited.Significant advancements have been made in the field of GFRCs, as demonstrated by an increased collaboration amongst different countries, organizations and investigators, which enhanced the development and progression of research related to GFRCs.
Assuntos
Bibliometria , Resinas Compostas , Vidro , Humanos , Brasil , Odontologia , Materiais DentáriosRESUMO
OBJECTIVE: The aim of this study was to synthesize a new bioactive and antibacterial composite by incorporating reactive calcium phosphate and antibacterial polylysine into a resin matrix and evaluate the effect of these fillers on structural analysis, degree of monomer conversion, mechanical properties, and bioactivity of these newly developed polypropylene based dental composites. METHODOLOGY: Stock monomers were prepared by mixing urethane dimethacrylate and polypropylene glycol dimethacrylate and combined with 40 wt% silica to make experimental control (E-C). The other three experimental groups contained a fixed percentage of silica (40 wt%), monocalcium phosphate monohydrate, and ß-tri calcium phosphate (5 wt% each) with varying amounts of polylysine (PL). These groups include E-CCP0 (0 wt% PL), E-CCP5 (5 wt% PL) and E-CCP10 (10 wt% PL). The commercial control used was Filtek™ Z250 3M ESPE. The degree of conversion was assessed by using Fourier transform infrared spectroscopy (FTIR). Compressive strength and Vicker's micro hardness testing were evaluated after 24 h of curing the samples. For bioactivity, prepared samples were placed in simulated body fluid for 0, 1, 7, and 28 days and were analyzed using a scanning electron microscope (SEM). SPSS 23 was used to analyze the data and one-way ANOVA and post hoc tukey's test were done, where the significant level was set ≤0.05. RESULTS: Group E-C showed better mechanical properties than other experimental and commercial control groups. Group E-C showed the highest degree of conversion (72.72 ± 1.69%) followed by E-CCP0 (72.43 ± 1.47%), Z250 (72.26 ± 1.75%), E-CCP10 (71.07 ± 0.19%), and lowest value was shown by E-CCP5 (68.85 ± 7.23%). In shear bond testing the maximum value was obtained by E-C. The order in decreasing value of bond strength is E-C (8.13 ± 3.5 MPa) > Z250 (2.15 ± 1.1 MPa) > E-CCP10 (2.08 ± 2.1 MPa) > E-CCP5 (0.94 ± 0.8 MPa) > E-CCP0 (0.66 ± 0.2 MPa). In compressive testing, the maximum strength was observed by commercial control i.e., Z250 (210.36 ± 18 MPa) and E-C (206.55 ± 23 MPa), followed by E-CCP0 (108.06 ± 19 MPa), E-CCP5 (94.16 ± 9 MPa), and E-CCP10 (80.80 ± 13 MPa). The maximum number of hardness was shown by E-C (93.04 ± 8.23) followed by E-CCP0 (38.93 ± 9.21) > E-CCP10 (35.21 ± 12.31) > E-CCP5 (34.34 ± 12.49) > Z250 (25 ± 2.61). SEM images showed that the maximum apatite layer as shown by E-CCP10 and the order followed as E-CCP10 > E-CCP5 > E-CCP0 >Z250> E-C. CONCLUSION: The experimental formulation showed an optimal degree of conversion with compromised mechanical properties when the polylysine percentage was increased. Apatite layer formation and polylysine at the interface may result in remineralization and ultimately lead to the prevention of secondary caries formation.
Assuntos
Resinas Compostas , Polilisina , Polilisina/química , Resinas Compostas/química , Teste de Materiais , Fosfatos de Cálcio/química , Metacrilatos , Apatitas , Dióxido de Silício , AntibacterianosRESUMO
This study introduces innovative operational laws, Einstein operations, and novel aggregation algorithms tailored for handling q-spherical fuzzy rough data. The research article presents three newly designed arithmetic averaging operators: q-spherical fuzzy rough Einstein weighted averaging, q-spherical fuzzy rough Einstein ordered weighted averaging, and q-spherical fuzzy rough Einstein hybrid weighted averaging. These operators are meticulously crafted to enhance precision and accuracy in arithmetic averaging. By thoroughly examining their characteristics and interrelations with existing aggregate operators, the article uncovers their distinct advantages and innovative contributions to the field. Furthermore, the study illustrates the actual implementation of these newly constructed operators in a variety of attribute decision-making scenarios employing q-SFR data, yielding useful insights. Our suite of decision-making tools, including these operators, is specifically designed to address complex and uncertain data. To validate our approach, this study offers a numerical example showcasing the real-world applicability of the proposed operators. The results not only corroborate the efficacy of the proposed method but also underscore its potential significance in practical decision-making processes dealing with intricate and ambiguous data. Additionally, comparative and sensitivity analyses are presented to assess the effectiveness and robustness of our proposed work relative to other approaches. The acquired knowledge enriches the current understanding and opens new avenues for future research.
RESUMO
OBJECTIVE: The aim is to coat orthodontic brackets with two different bioactive materials and to compare the mechanical and morphological properties of coated brackets and tooth surfaces. MATERIALS AND METHODS: A total of 120 stainless steel brackets were divided equally into three groups, that is, the uncoated brackets and nanohydroxyapatite (nHA)-coated, and nanobioactive glass (nBG)-coated brackets using a spin coater machine. The brackets were bonded on the enamel surface and underwent remineralization/demineralization cycles for days 1, 7, 14, and 30. At each time interval, the bond strength of the brackets was assessed using mechanical loading. An optical and scanning electron microscope (SEM) were used for surface evaluation, and the adhesive remanent index (ARI) values were obtained and quantified. STATISTICAL ANALYSIS: One-way analysis of variance using Tukey's test was used to compare the differences among the groups. RESULTS: A uniform distribution of nanoparticles occurred on the surfaces of brackets. The shear bond strength (SBS) showed no significant differences in any tested groups on days 1, 7, and 14. However, control and nBG showed a significant difference from nHA at day 30. On days 7, 14, and 30, the nHA group showed the highest SBS values among the groups. For ARI, most samples showed an adhesive nature of failure at the enamel-brackets interface. The images confirmed the presence of coated particles on brackets and remnants of adhesives after SBS. CONCLUSION: This study confirmed that the nHA- and nBG-coated brackets have a high potential for application in orthodontics regarding structural and mechanical properties.
RESUMO
This study aimed to investigate the efficacy and durability of bioactive glass-based dental resin infiltrants. Resin infiltrants were formulated by combining photoinitiated dimethacrylate monomers with three variations of bioactive glass: 45S5 Bioglass (RIS), boron-substituted (RIB), fluoride-substituted (RIF), and pure resins (PR), whereby TOOTH group (TH) and ICON (CN) served as commercial control groups. Teeth samples were prepared, and experimental and control infiltrants were applied on demineralized human-extracted teeth. All the samples were subjected to immersion in artificial saliva and pH cycling for 30 days. The samples from another group underwent tooth brushing simulation for 9600 cycles. Following artificial saliva immersion, the samples' hardness values showed that RIB had the highest values (318.44 ± 3.83) while PR (212.52 ± 9.02) had the lowest values. After immersing into the pH cycling solution, the RIF showed the highest hardness (286.86 ± 5.11), while the lowest values for the CN (143.76 ± 3.50). After the tooth brushing simulation, the teeth samples with RIB showed maximum microhardness values (312.06 ± 16.30) and the weakest for the TH (189.60 ± 6.43). The commercial and experimental enamel resin infiltrants showed almost similar results overall, with RIB demonstrating better microhardness and comparable surface roughness. In contrast, RIF proved more resistant to pH cycling, exhibited higher microhardness, and performed better in surface roughness analysis. These findings suggest that resin infiltrant materials, especially RIF, have promising potential for effectively and esthetically managing white spot lesions.
RESUMO
AIMS AND OBJECTIVES: To examine if a novel antimicrobial silane K21 can alter macrophage polarisation and affect fibroblast proliferation by deciphering the molecular pathways for programmed healing using a combined in vitro and in vivo (animal) burn model. MATERIALS AND METHODS: An injectable silane-based antimicrobial aimed to modulate macrophage polarisation was manufactured. Experimental analysis included colorimetric cell migration assays on gingival fibroblasts, macrophage phagocytosis characterisation, immunofluorescence staining, triacylglycerol accumulation within macrophages by LCMS, cellular metabolic/proliferation assays, macrophage exposure quantification with morphology assessment using FE-SEM, Raman spectral analysis, RNA isolation for relative gene expression and animal study model to morphometrically and microscopically analyse partial thickness burn wound healing under QAS/K21. RESULTS: M1 and M2 polarisation both appeared exaggerated under QAS/K21 treatment. The wounds treated with K21 had depicted accelerated healing as compared to control (P < .05) in dorsal skin of rabbits. Relative gene expression results demonstrate reduced cytokine and anti-inflammatory response under the influence of K21. While M1 expression, TG accumulation, and associated characterisations demonstrate the programmed inflammatory potential of K21. CONCLUSION: the antimicrobial and reparative efficacy of K21 silane aids in programmed inflammation for enhanced tissue healing and repair.
RESUMO
This study aims to synthesize and characterize lignin-decorated zinc oxide nanoparticles before incorporating them into resin-modified glass ionomer cement (RMGIC) to improve their anticariogenic potential and mechanical properties (shear bond strength and microhardness). Probe sonication was used to synthesize lignin-decorated zinc oxide nanoparticles which were then characterized via scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. Following characterization, these were incorporated in RMGIC (Gold label, Fuji II LC). Three major groups, experimental group A (EGA), experimental group B (EGB), and control group (CG), were outlined. EGA and EGB were divided into numbered subgroups based on the ascending concentrations of nanoparticles (5, 10, and 15%) of lignin-coated zinc oxide and zinc-oxide, respectively. CG served as a control and comprised cured RMGIC samples without any incorporation. Anticariogenic analysis was conducted on experimental RMGIC samples via disk-diffusion (n = 3) and direct contact test (n = 3) against Streptococcus mutans (ATCC 25175). Optical density values for days 1, 3, and 5 were recorded via a UV-Vis spectrophotometer. A shear bond strength test was performed using 35 premolars. The adhesive remnant index was used to estimate the site of bond failure. For the Vickers microhardness test (n = 3), 100 g of load at 10 s dwell time was set. Atomic absorption spectroscopy was performed over 28 days to determine the release of zinc from the samples. All tests were analyzed statistically. The anticariogenic potential of EGA and EGB was significantly greater (p ≤ 0.05) than that of the control. The shear bond strength test reported the highest value for EGA15 with all groups exhibiting failure at the bracket/RMGIC interface. The microhardness of EGA15 yielded the highest value (p ≤ 0.05). Release kinetics displayed a steady release with EGB15 exhibiting the highest value. The EGA and EGB samples displayed good anticariogenic potential, which was sustained for 28 days without any deleterious effect on the shear bond strength and microhardness.
Assuntos
Nanopartículas , Óxido de Zinco , Resinas Compostas/química , Lignina , Cimentos de Resina/química , Teste de Materiais , Cimentos de Ionômeros de Vidro/química , ZincoRESUMO
OBJECTIVE: The study aimed to evaluate and compare the surface micro-hardness, roughness, color, and morphology of enamel after Er,Cr:YSGG laser irradiation, followed by application of three types of bioactive glasses-based resin infiltrants, and the samples groups were challenged with the pH cycle. METHODOLOGY: Experimental photoactivated resin infiltrants were synthesized using dimethacrylate resins, whereby three different types of bioactive glasses (BGs), i.e., 45S5, fluoridated-BG (F-BG), and borosilicate-BG (B-BG), were incorporated into the resin system. Initially, white spot lesions were created artificially on the toosth enamel surface, then irradiated with Er,Cr:YSGG laser. Then, the resin-only and BG-based resins were infiltrated on the enamel surface. All samples were pH challenged for 14 days, and the micro-hardness, surface roughness, surface morphology, and color stability (ΔE) analyses were conducted before and after the 14 days pH challenge. RESULTS: After laser irradiation, the micro-hardness was significantly high with 45S5 group compared to resin-only (p = 0.021), F-BG (p = 0.042), and B-BG (p = 0.001) groups. After the pH challenge, the micro-hardness values for all groups were reduced significantly (p ≤ 0.05). The surface roughness was least with the resin-only group and showed a non-significant difference with F-BG (p = 0.34) and significant differences with both B-BG (p = 0.005), and 45S5 (p = 0.010) groups. After the pH cycle, the roughness of all groups was increased significantly (p ≤ 0.05), except B-BG group showed a non-significant difference (p = 0.528). The B-BG group showed significantly high ΔE between day 0 and baseline compared to resin-only (p = 0.0008), F-BG (p = 0.017), and 45S5 (p = 0.029), whereas between day 14 and baseline, the lowest ΔE value was observed for B-BG (14.2 ± 2.10) and maximum for the resin-only (20.57 ± 2.47) group. The SEM images showed pitting on the surface of all resin infiltrant groups after 14 days of pH challenge. CONCLUSION: The morphological difference was observed after the laser irradiation on the enamel surface. The differences in micro-hardness, surface roughness, and color were observed after the application of experimental resin infiltrants and significant differences were observed after the pH challenge.