Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Data Brief ; 55: 110575, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38948404

RESUMO

The dataset extensively examines the factors considered when choosing sweet potato genotypes, considering various characteristics. Notably, Moz1.15 demonstrated the highest marketable root yield at 46.46 t/ha, H5.ej.10 exhibited the highest beta-carotene level at 48.94 mg/100 g, and Moz1.9 recorded the highest vitamin C content at 23.89 mg/100 g. Moreover, there were significant correlations (ranging from 0.21 to 0.84) among the yield and quality traits studied in sweet potatoes. Principal component analysis (PCA) confirmed the connections among these traits, identifying four distinct clusters of genotypes, each characterized by specific significant combinations of traits. Factor analysis using the multi-trait genotype-ideotype index (MGIDI) highlighted the considerable impact of sweet potato traits across two growing seasons (2020-21 and 2021-22), facilitating the selection of genotypes with potential genetic gains ranging from 1.86 % to 75.4 %. Broad-sense heritability (h2) varied from 64.9 % to 99.8 %. The use of the MGIDI index pinpointed several promising genotypes, with BARI Mistialu-12 and H9.7.12 consistently performing well over both years. These genotypes exhibited both strengths and weaknesses.

2.
Data Brief ; 53: 110176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38375137

RESUMO

The dataset explores the impact of waterlogging stress on sesame plants during the pre-flowering stage, recognizing its global impact on crop yield and the identification of tolerant genotypes using the MGIDI index. Carried out in Bangladesh, the research assesses the survival status, grain yield, and stress tolerance indices of 40 sesame genotypes, revealing that twelve of them demonstrated resilience under 72 h of waterlogging stress at the pre-flowering stage. There were variations in genotypic grain yield, and G15 exhibited the highest yields, recording 5.22 g/plant under normal conditions and 4.10 g/plant under waterlogging stress. The MGIDI index, evaluating waterlogging tolerance, identified G4 as the most favorable genotype, followed by G5 and G12. Factor analysis within the MGIDI index uncovered distinct tolerance and susceptibility indices, highlighting strengths and weaknesses in the selected genotypes. The selection gain percentages of these genotypes ranged from 12.9 to 37.4, indicating high broad-sense heritability (≥0.97). These results underscore the potential of genotype selection based on waterlogging stress indices, providing valuable insights for breeders addressing stress-related crop challenges in the face of changing climatic conditions.

3.
Data Brief ; 52: 109995, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38226031

RESUMO

A study was conducted in five regions of Bangladesh, specifically Gazipur, Bogura, Jamalpur, Jashore, and Chattogram, each characterized by suitable agro-ecologies for sweet potato cultivation. The purpose of this data article was to demonstrate the correlations between traits and the selection of stable varieties based on the multi-trait stability index (MTSI). The data indicated a direct link between multiple characteristics and both the yield and factors contributing to yield. This implies that enhancing these traits might result in a higher overall production of sweet potato storage roots. Furthermore, the factor analysis for MTSI demonstrated that the desired goal for selection was achieved for all traits, except for mean vine length (VL) and storage root dry weight (DW). The broad sense heritability ranged from 0 to 0.97, and the selection gain percentage ranged from 0 to 42.8. The MTSI analysis identified the sweet potato variety BARI Mistialu-15 as the most stable among the other studied varieties.

4.
Data Brief ; 54: 110493, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38779411

RESUMO

The dataset focuses on evaluating the performance of 17 sweet potato varieties (G) released by the Bangladesh Agricultural Research Institute (BARI) in terms of storage root yield and stability across five locations (E) in Bangladesh-Gazipur, Bogura, Jamalpur, Jashore, and Chattogram. The result revealed that BARI Mistialu-12 exhibited the highest average storage root yield at 45.35 t/ha, closely followed by BARI Mistialu-16 at 44.64 t/ha. Conversely, BARI Mistialu-1 had the lowest mean yield of 25.99 t/ha. Among the locations, Bogura recorded the highest mean root yield at 37.05 t/ha, while Chattogram exhibited the lowest at 31.27 t/ha. A combined analysis of variance revealed the presence of variability in storage root yield attributed to the genotype-location (environment) interaction (GEI). To delve deeper into this interaction, additive and multiplicative interaction effect models (AMMI) along with a linear mixed model (LMM) were employed for further investigations to confirm the significant contribution of GEI variance to root yield. The LMM results showed genetic variance (%), heritability (%), selection accuracy (%), and GEI correlation coefficients of 52.27, 54, 94, and 30, respectively. The AMMI analysis indicated that the first two principal components accounted for 74.60 % of GEI, with 20.16 % attributed to it. Assessing significant Interaction Principal Component Analyses (IPCAs) through the Weighted Average of Absolute Scores (WAAS) indicated that BARI Mistialu-12 is the most stable genotype, followed by BARI Mistialu-16 and BARI Mistialu-8, all displaying above-average root yield. The mega-environment analysis associated the highest root production of BARI Mistialu-11 and BARI Mistialu-2 with the Jamalpur location, while Gazipur, Bogura, and Jashore were linked with the superior performance of BARI Mistialu-12 and BARI Mistialu-16 genotypes. These findings are crucial for future breeding programs and the rapidly growing sweet potato industry, given the stable high-yield potential across diverse agro-ecological conditions. However, it is imperative to repeat the study to ensure reliable outcomes.

5.
Heliyon ; 10(10): e31569, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38826716

RESUMO

In Bangladesh, sweet potato holds the fourth position as a crucial carbohydrate source, trailing rice, wheat, and potato. However, locally grown sweet potato varieties often display limited stability and yield. To tackle this challenge, diverse selection methods and statistical models were utilized to pinpoint sweet potato genotypes showcasing both stability and superior yield and quality traits. In the initial two years, multiple selection methods were employed to narrow down the collections based on preferences for yield and its contributing traits. Subsequently, a multi-environment trial (MET) was conducted in the following year to pinpoint superior and stable genotypes with desirable yield and quality characteristics. An integrated approach involving the Multi-Trait Genotype Ideotype Distance Index (MGIDI), Factor Analysis and Ideotype-Design (FAI-BLUP), and Smith-Hazel Index (SH) led to the identification of 71 superior sweet potato genotypes out of a total of 351 in the initial growing season. In the subsequent season, the MGIDI selection index was applied to the 71 genotypes, resulting in the selection of 11 top-performing genotypes. This selection process was complemented by a detailed analysis of the strengths and weaknesses of the selected genotypes. In the MET, the mixed effect model, specifically the linear mixed model (LMM), identified significant genotypic and genotype-environment interaction (GEI) variances. This points to elevated heritability and selection accuracy, ultimately boosting the model's reliability. By combining the strengths of LMM and additive main effects and multiplicative interaction (AMMI), the best linear unbiased prediction (BLUP) index identified H20 as the top-performing genotype for marketable root yield (MRY), H37 for dry weight of root (DW), H8 for beta carotene (BC) and H41 for vitamin c (VC). These genotypes surpassed the overall average in the WAAS index. For simultaneous stability and high performance, the WAASBY index selected H37 for MRY, H6 for DW, H61 for BC, and H3 for VC. Finally, genotypes H3 and H20 were selected using multi-trait stability index (MTSI), as they possessed high performance and stability. Based on the selection sense, the objective has been achieved with regards to the trait MRW, which serves as a major criterion for a superior variety of sweet potato.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA