Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38539730

RESUMO

Catchment classification plays an important role in many applications associated with water resources and environment. In recent years, several studies have applied the concepts of nonlinear dynamics and chaos for catchment classification, mainly using dimensionality measures. The present study explores prediction as a measure for catchment classification, through application of a nonlinear local approximation prediction method. The method uses the concept of phase-space reconstruction of a time series to represent the underlying system dynamics and identifies nearest neighbors in the phase space for system evolution and prediction. The prediction accuracy measures, as well as the optimum values of the parameters involved in the method (e.g., phase space or embedding dimension, number of neighbors), are used for classification. For implementation, the method is applied to daily streamflow data from 218 catchments in Australia, and predictions are made for different embedding dimensions and number of neighbors. The prediction results suggest that phase-space reconstruction using streamflow alone can provide good predictions. The results also indicate that better predictions are achieved for lower embedding dimensions and smaller numbers of neighbors, suggesting possible low dimensionality of the streamflow dynamics. The classification results based on prediction accuracy are found to be useful for identification of regions/stations with higher predictability, which has important implications for interpolation or extrapolation of streamflow data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA