Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Lipid Res ; 63(10): 100281, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36115594

RESUMO

Serine palmitoyltransferase (SPT) predominantly incorporates serine and fatty acyl-CoAs into diverse sphingolipids (SLs) that serve as structural components of membranes and signaling molecules within or amongst cells. However, SPT also uses alanine as a substrate in the contexts of low serine availability, alanine accumulation, or disease-causing mutations in hereditary sensory neuropathy type I, resulting in the synthesis and accumulation of 1-deoxysphingolipids (deoxySLs). These species promote cytotoxicity in neurons and impact diverse cellular phenotypes, including suppression of anchorage-independent cancer cell growth. While altered serine and alanine levels can promote 1-deoxySL synthesis, they impact numerous other metabolic pathways important for cancer cells. Here, we combined isotope tracing, quantitative metabolomics, and functional studies to better understand the mechanistic drivers of 1-deoxySL toxicity in cancer cells. We determined that both alanine treatment and SPTLC1C133W expression induce 1-deoxy(dihydro)ceramide synthesis and accumulation but fail to broadly impact intermediary metabolism, abundances of other lipids, or growth of adherent cells. However, we found that spheroid culture and soft agar colony formation were compromised when endogenous 1-deoxySL synthesis was induced via SPTLC1C133W expression. Consistent with these impacts on anchorage-independent cell growth, we observed that 1-deoxySL synthesis reduced plasma membrane endocytosis. These results highlight a potential role for SPT promiscuity in linking altered amino acid metabolism to plasma membrane endocytosis.


Assuntos
Neoplasias , Serina C-Palmitoiltransferase , Serina C-Palmitoiltransferase/metabolismo , Ágar/metabolismo , Esfingolipídeos/metabolismo , Serina/química , Ceramidas/metabolismo , Alanina/metabolismo , Membrana Celular/metabolismo , Redes e Vias Metabólicas , Endocitose , Neoplasias/metabolismo
2.
Cancer Metab ; 9(1): 40, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861885

RESUMO

BACKGROUND: Kidney cancer is a common adult malignancy in the USA. Clear cell renal cell carcinoma (ccRCC), the predominant subtype of kidney cancer, is characterized by widespread metabolic changes. Urea metabolism is one such altered pathway in ccRCC. The aim of this study was to elucidate the contributions of urea cycle enzymes, argininosuccinate synthase 1 (ASS1), and argininosuccinate lyase (ASL) towards ccRCC progression. METHODS: We employed a combination of computational, genetic, and metabolomic tools along with in vivo animal models to establish a tumor-suppressive role for ASS1 and ASL in ccRCC. RESULTS: We show that the mRNA and protein expression of urea cycle enzymes ASS1 and ASL are reduced in ccRCC tumors when compared to the normal kidney. Furthermore, the loss of ASL in HK-2 cells (immortalized renal epithelial cells) promotes growth in 2D and 3D growth assays, while combined re-expression of ASS1 and ASL in ccRCC cell lines suppresses growth in 2D, 3D, and in vivo xenograft models. We establish that this suppression is dependent on their enzymatic activity. Finally, we demonstrate that conservation of cellular aspartate, regulation of nitric oxide synthesis, and pyrimidine production play pivotal roles in ASS1+ASL-mediated growth suppression in ccRCC. CONCLUSIONS: ccRCC tumors downregulate the components of the urea cycle including the enzymes argininosuccinate synthase 1 (ASS1) and argininosuccinate lyase (ASL). These cytosolic enzymes lie at a critical metabolic hub in the cell and are involved in aspartate catabolism and arginine and nitric oxide biosynthesis. Loss of ASS1 and ASL helps cells redirect aspartate towards pyrimidine synthesis and support enhanced proliferation. Additionally, reduced levels of ASS1 and ASL might help regulate nitric oxide (NO) generation and mitigate its cytotoxic effects. Overall, our work adds to the understanding of urea cycle enzymes in a context-independent of ureagenesis, their role in ccRCC progression, and uncovers novel potential metabolic vulnerabilities in ccRCC.

3.
Ann N Y Acad Sci ; 1462(1): 5-13, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792987

RESUMO

Tumor cells have devised unique metabolic strategies to garner enough nutrients to sustain continuous growth and cell division. Oncogenic mutations may alter metabolic pathways to unlock new sources of energy, and cells take the advantage of various scavenging pathways to ingest material from their environment. These changes in metabolism result in a metabolic profile that, in addition to providing the building blocks for macromolecules, can also influence cell signaling pathways to promote tumor initiation and progression. Understanding what pathways tumor cells use to synthesize the materials necessary to support metabolic growth can pave the way for new cancer therapeutics. Potential strategies include depriving tumors of the materials needed to grow or targeting pathways involved in dependencies that arise by virtue of their altered metabolis.


Assuntos
Congressos como Assunto/tendências , Metabolismo Energético/fisiologia , Neoplasias/metabolismo , Relatório de Pesquisa/tendências , Animais , Transformação Celular Neoplásica/metabolismo , Humanos , Redes e Vias Metabólicas/fisiologia , Cidade de Nova Iorque
4.
Nat Commun ; 11(1): 498, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980651

RESUMO

Tumour cells frequently utilize glutamine to meet bioenergetic and biosynthetic demands of rapid cell growth. However, glutamine dependence can be highly variable between in vitro and in vivo settings, based on surrounding microenvironments and complex adaptive responses to glutamine deprivation. Soft tissue sarcomas (STSs) are mesenchymal tumours where cytotoxic chemotherapy remains the primary approach for metastatic or unresectable disease. Therefore, it is critical to identify alternate therapies to improve patient outcomes. Using autochthonous STS murine models and unbiased metabolomics, we demonstrate that glutamine metabolism supports sarcomagenesis. STS subtypes expressing elevated glutaminase (GLS) levels are highly sensitive to glutamine starvation. In contrast to previous studies, treatment of autochthonous tumour-bearing animals with Telaglenastat (CB-839), an orally bioavailable GLS inhibitor, successfully inhibits undifferentiated pleomorphic sarcoma (UPS) tumour growth. We reveal glutamine metabolism as critical for sarcomagenesis, with CB-839 exhibiting potent therapeutic potential.


Assuntos
Glutamina/metabolismo , Sarcoma/metabolismo , Sarcoma/patologia , Aloenxertos/efeitos dos fármacos , Aloenxertos/metabolismo , Animais , Benzenoacetamidas/farmacologia , Benzenoacetamidas/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Glutaminase/metabolismo , Camundongos , Nucleosídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sarcoma/diagnóstico por imagem , Sarcoma/tratamento farmacológico , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Tomografia Computadorizada por Raios X
6.
Cell Metab ; 27(6): 1263-1280.e6, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29754953

RESUMO

Kidney cancer, one of the ten most prevalent malignancies in the world, has exhibited increased incidence over the last decade. The most common subtype is "clear cell" renal cell carcinoma (ccRCC), which features consistent metabolic abnormalities, such as highly elevated glycogen and lipid deposition. By integrating metabolomics, genomic, and transcriptomic data, we determined that enzymes in multiple metabolic pathways are universally depleted in human ccRCC tumors, which are otherwise genetically heterogeneous. Notably, the expression of key urea cycle enzymes, including arginase 2 (ARG2) and argininosuccinate synthase 1 (ASS1), is strongly repressed in ccRCC. Reduced ARG2 activity promotes ccRCC tumor growth through at least two distinct mechanisms: conserving the critical biosynthetic cofactor pyridoxal phosphate and avoiding toxic polyamine accumulation. Pharmacological approaches to restore urea cycle enzyme expression would greatly expand treatment strategies for ccRCC patients, where current therapies only benefit a subset of those afflicted with renal cancer.


Assuntos
Arginase/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Poliaminas/metabolismo , Animais , Arginase/genética , Argininossuccinato Sintase/metabolismo , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/enzimologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/enzimologia , Camundongos , Camundongos Nus , Fosfato de Piridoxal/metabolismo , Ureia/metabolismo
7.
Clin Cancer Res ; 22(2): 374-82, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26307133

RESUMO

PURPOSE: Copy number alterations have been shown to be involved in melanoma pathogenesis. The randomized phase III clinical trial E2603: carboplatin, paclitaxel, ± sorafenib (CP vs. CPS) offers a large collection of tumor samples to evaluate association of somatic mutations, genomic alterations, and clinical outcomes, prior to current FDA-approved therapies. EXPERIMENTAL DESIGN: Copy number and mutational analysis on 119 pretreatment samples was performed. RESULTS: CPS therapy was associated with improved progression-free survival (PFS) compared with CP in patients with tumors with RAF1 (cRAF) gene copy gains (HR, 0.372; P = 0.025) or CCND1 gene copy gains (HR, 0.45; P = 0.035). CPS therapy was associated with improved overall survival (OS) compared with CP in patients with tumors with KRAS gene copy gains (HR, 0.25; P = 0.035). BRAF gene copy gain and MET amplification were more common in samples with V600K versus V600E mutations (P < 0.001), which was validated in The Cancer Genome Atlas (TCGA) dataset. CONCLUSIONS: We observed improved treatment response with CPS in patients with melanoma whose tumors have RAF1 (cRAF), KRAS, or CCND1 amplification, all of which can be attributed to sorafenib targeting CRAF. These genomic alterations should be incorporated in future studies for evaluation as biomarkers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carboplatina/uso terapêutico , Variações do Número de Cópias de DNA/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/genética , Niacinamida/análogos & derivados , Paclitaxel/uso terapêutico , Compostos de Fenilureia/uso terapêutico , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA/métodos , Intervalo Livre de Doença , Método Duplo-Cego , Genes ras/genética , Humanos , Mutação/efeitos dos fármacos , Mutação/genética , Estadiamento de Neoplasias/métodos , Niacinamida/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-met/genética , Sorafenibe , Resultado do Tratamento
8.
Nat Commun ; 6: 6140, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25608029

RESUMO

Pheochromocytomas and paragangliomas (PCC/PGL) are the solid tumour type most commonly associated with an inherited susceptibility syndrome. However, very little is known about the somatic genetic changes leading to tumorigenesis or malignant transformation. Here we perform whole-exome sequencing on a discovery set of 21 PCC/PGL and identify somatic ATRX mutations in two SDHB-associated tumours. Targeted sequencing of a separate validation set of 103 PCC/PGL identifies somatic ATRX mutations in 12.6% of PCC/PGL. PCC/PGL with somatic ATRX mutations are associated with alternative lengthening of telomeres and clinically aggressive behaviour. This finding suggests that loss of ATRX, an SWI/SNF chromatin remodelling protein, is important in the development of clinically aggressive PCC/PGL.


Assuntos
Neoplasias das Glândulas Suprarrenais/genética , DNA Helicases/genética , Exoma , Neoplasias de Cabeça e Pescoço/genética , Proteínas Nucleares/genética , Paraganglioma/genética , Feocromocitoma/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/patologia , Cromatina/química , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Expressão Gênica , Predisposição Genética para Doença , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Proteínas Nucleares/metabolismo , Paraganglioma/metabolismo , Paraganglioma/patologia , Feocromocitoma/metabolismo , Feocromocitoma/patologia , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Telômero/ultraestrutura , Homeostase do Telômero , Proteína Nuclear Ligada ao X
9.
Clin Cancer Res ; 21(7): 1652-64, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25617424

RESUMO

PURPOSE: To investigate the roles of melanoma-associated macrophages in melanoma resistance to BRAF inhibitors (BRAFi). EXPERIMENTAL DESIGN: An in vitro macrophage and melanoma cell coculture system was used to investigate whether macrophages play a role in melanoma resistance to BRAFi. The effects of macrophages in tumor resistance were examined by proliferation assay, cell death assay, and Western blot analyses. Furthermore, two mouse preclinical models were used to validate whether targeting macrophages can increase the antitumor activity of BRAFi. Finally, the number of macrophages in melanoma tissues was examined by immunohistochemistry. RESULTS: We demonstrate that in BRAF-mutant melanomas, BRAFi paradoxically activate the mitogen-activated protein kinase (MAPK) pathway in macrophages to produce VEGF, which reactivates the MAPK pathway and stimulates cell growth in melanoma cells. Blocking the MAPK pathway or VEGF signaling then reverses macrophage-mediated resistance. Targeting macrophages increases the antitumor activity of BRAFi in mouse and human tumor models. The presence of macrophages in melanomas predicts early relapse after therapy. CONCLUSIONS: Our findings demonstrate that macrophages play a critical role in melanoma resistance to BRAFi, suggesting that targeting macrophages will benefit patients with BRAF-mutant melanoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos/imunologia , Macrófagos/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Immunoblotting , Imuno-Histoquímica , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno , Transfecção , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA