Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(11): 115704, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29334482

RESUMO

Safe operation and health of structures relies on their ability to effectively dissipate undesired vibrations, which could otherwise significantly reduce the life-time of a structure due to fatigue loads or large deformations. To address this issue, nanoscale fillers, such as carbon nanotubes (CNTs), have been utilized to dissipate mechanical energy in polymer-based nanocomposites through filler-matrix interfacial friction by benefitting from their large interface area with the matrix. In this manuscript, for the first time, we experimentally investigate the effect of CNT alignment with respect to reach other and their orientation with respect to the loading direction on vibrational damping in nanocomposites. The matrix was polystyrene (PS). A new technique was developed to fabricate PS-CNT nanocomposites which allows for controlling the angle of CNTs with respect to the far-field loading direction (misalignment angle). Samples were subjected to dynamic mechanical analysis, and the damping of the samples were measured as the ratio of the loss to storage moduli versus CNT misalignment angle. Our results defied a notion that randomly oriented CNT nanocomposites can be approximated as a combination of matrix-CNT representative volume elements with randomly aligned CNTs. Instead, our results points to major contributions of stress concentration induced by each CNT in the matrix in proximity of other CNTs on vibrational damping. The stress fields around CNTs in PS-CNT nanocomposites were studied via finite element analysis. Our findings provide significant new insights not only on vibrational damping nanocomposites, but also on their failure modes and toughness, in relation to interface phenomena.

2.
Nanoscale ; 11(15): 7447-7456, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30938750

RESUMO

Here we report an unprecedented mechanical size effect at the nanoscale in polymer-derived ceramic (PDC) nanofibers. Silicon oxycarbide (SiOC) PDCs were fabricated as micro- and nanofibers without the aid of fillers. By decreasing the size of SiOC ceramic fibers from 1.1 µm to 630 nm (reduction of 74%), the strength of nanofibers nearly tripled, going from ∼1 GPa to ∼3.3 GPa. This increase in strength exceeds the predictions of the Griffith theorem, which relies on the length-scale dependence of energy release rate during crack propagation, suggesting a reduction in flaw size more than proportional to sample size. Given the crosslinked and amorphous nature of SiOC PDCs, flaws are likely microcracks and voids, which form during polymer degassing as it is pyrolyzed to PDC nanofibers. A reduction in sample size may favor degassing via diffusion, preceding bubble and void formation. We developed a new reactive force field (ReaxFF) with parameters for Si/O/C/H/N to study the mechanics of PDCs in extreme cases where no void is present. The models and experiments compare favorably in terms of the elastic modulus. The simulations suggest a strength of ∼8.5 GPa for a "flawless" structure, which is in line with extrapolated experimental results, with C-C breakage as the root cause of failure. This work clearly shows the benefits of utilizing nanoscale components as building blocks of superstrong PDC structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA