Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 243: 117840, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38081342

RESUMO

Since the establishment of the first global refinery in 1856, crude oil has remained one of the most lucrative natural resources worldwide. However, during the extraction process from reservoirs, crude oil gets contaminated with sediments, water, and other impurities. The presence of pressure, shear forces, and surface-active compounds in crude oil leads to the formation of unwanted oil/water emulsions. These emulsions can take the form of water-in-oil (W/O) emulsions, where water droplets disperse continuously in crude oil, or oil-in-water (O/W) emulsions, where crude oil droplets are suspended in water. To prevent the spread of water and inorganic salts, these emulsions need to be treated and eliminated. In existing literature, different demulsification procedures have shown varying outcomes in effectively treating oil/water emulsions. The observed discrepancies have been attributed to various factors such as temperature, salinity, pH, droplet size, and emulsifier concentrations. It is crucial to identify the most effective demulsification approach for oil/water separation while adhering to environmental regulations and minimizing costs for the petroleum sector. Therefore, this study aims to explore and review recent advancements in two popular demulsification techniques: chemical demulsification and magnetic nanoparticles-based (MNP) demulsification. The advantages and disadvantages of each technique are assessed, with the magnetic approach emerging as the most promising due to its desirable efficiency and compliance with environmental and economic concerns. The findings of this report are expected to have a significant impact on the overall process of separating oil and water, benefiting the oil and gas industry, as well as other relevant sectors in achieving the circular economy.


Assuntos
Nanopartículas , Petróleo , Emulsões/química , Emulsificantes , Recursos Naturais
2.
ACS Appl Mater Interfaces ; 16(12): 15011-15022, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38471069

RESUMO

Achieving a high energy density and long-cycle stability in energy storage devices demands competent electrochemical performance, often contingent on the innovative structural design of materials under investigation. This study explores the potential of transition metal selenide (TMSe), known for its remarkable activity, electronic conductivity, and stability in energy storage and conversion applications. The innovation lies in constructing hollow structures of binary metal selenide (CoNi-Se) at the surface of reduced graphene oxide (rGO) arranged in a three-dimensional (3D) morphology (CoNi-Se/rGO). The 3D interconnected rGO architecture works as a microcurrent collector, while porous CoNi-Se sheets originate the active redox centers. Electrochemical analysis of CoNi-Se/rGO based-electrode reveals a distinct faradic behavior, thereby resulting in a specific capacitance of 2957 F g-1 (1478.5 C g-1), surpassing the bare CoNi-Se with a value of 2149 F g-1 (1074.5 C g-1) at a current density of 1 A g-1. Both materials exhibit exceptional high-rate capabilities, retaining 83% of capacitance at 10 A g-1 compared to 1 A g-1. In a two-electrode coin cell system, the device achieves a high energy density of 73 Wh kg-1 at a power density of 1500 W kg-1, stating an impressive 90.4% capacitance retention even after enduring 20,000 cycles. This study underscores the CoNi-Se/rGO composite's promise as a superior electrode material for high-performance energy storage applications.

3.
PLoS One ; 19(2): e0292737, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324619

RESUMO

The transition towards renewable energy sources necessitates efficient energy storage systems to meet growing demands. Electrochemical capacitors, particularly electric double-layer capacitors (EDLCs), show promising performance due to their superior properties. However, the presence of resistance limits their performance. This study explores using an external magnetic field to mitigate ion transfer resistance and enhance capacitance in magnetite-reduced graphene oxide (M-rGO) nanocomposites. M-rGO nanocomposites with varying weight ratios of magnetite were synthesized and comprehensively characterized. Characterization highlighted the difference in certain parameters such as C/O ratio, the Id/Ig ratio, surface area and particle size that contribute towards alteration of M-rGO's capacitive behaviour. Electrochemical studies demonstrated that applying a magnetic field increased specific capacitance by approximately 20% and reduced resistance by 33%. Notably, a maximum specific capacitance of 16.36 F/g (at a scan rate of 0.1 V/s) and 27.24 F/g (at a current density of 0.25 A/g) was achieved. These improvements were attributed to enhanced ion transportation and migration at the electrode/electrolyte interface, lowering overall resistance. However, it was also observed that the aforementioned parameters can also limit the M-rGO's performance, resulting in saturated capacitive state despite a reduced resistance. The integration of magnetic fields enhances energy storage in nanocomposite systems, necessitating further investigation into underlying mechanisms and practical applications.


Assuntos
Óxido Ferroso-Férrico , Grafite , Nanocompostos , Capacitância Elétrica , Campos Magnéticos
5.
Nanomaterials (Basel) ; 12(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36234665

RESUMO

Water pollution has been a prevalent issue globally for some time. Some pollutants are released into the water system without treatment, making the water not suitable for consumption. This problem may lead to more grave problems in the future including the destruction of the ecosystem along with the organisms inhabiting it, and illness and diseases endangering human health. Conventional methods have been implemented to remove hazardous pollutants such as dyes, heavy metals, and oil but are incapable of doing so due to economic restraints and the inability to degrade the pollutants, leading to secondary pollution. Photocatalysis is a more recently applied concept and is proven to be able to completely remove and degrade pollutants into simpler organic compounds. Titanium dioxide (TiO2) is a fine example of a photocatalyst owing to its cost-effectiveness and superb efficiency. However, issues such as the high recombination rate of photogenerated electrons along with positive holes while being only limited to UV irradiation need to be addressed. Carbonaceous materials such as graphene oxide (GO) can overcome such issues by reducing the recombination rate and providing a platform for adsorption accompanied by photocatalytic degradation of TiO2. The history and development of the synthesis of GO will be discussed, followed by the methods used for GO/TiO2 synthesis. The hybrid of GO/TiO2 as a photocatalyst has received some attention in the application of wastewater treatment due to its efficiency and it being environmentally benign. This review paper thereby aims to identify the origins of different pollutants followed by the sickness they may potentially inflict. Recent findings, including that GO/TiO2-related nanocomposites can remove pollutants from the water system, and on the photodegradation mechanism for pollutants including aromatic dyes, heavy metal and crude oil, will be briefly discussed in this review. Moreover, several crucial factors that affect the performance of photocatalysis in pollutant removal will be discussed as well. Therefore, this paper presents a critical review of recent achievements in the use of GO/TiO2-related nanocomposites and photocatalysis for removing various pollutants in wastewater treatment.

6.
PLoS One ; 15(2): e0228322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32012195

RESUMO

This study investigates the effects of stirring duration on the synthesis of graphene oxide (GO) using an improved Hummers' method. Various samples are examined under different stirring durations (20, 40, 60, 72, and 80 h). The synthesized GO samples are evaluated through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The GO sample with 72 h stirring duration (GO72) has the highest d-spacing in the XRD results, highest atomic percentage of oxygen in EDX (49.57%), highest intensity of oxygen functional group in FTIR spectra, and highest intensity ratio in Raman analysis (ID/IG = 0.756). Results show that GO72 with continuous stirring has the highest degree of oxidation among other samples. Electrochemical impedance spectroscopy analysis shows that GO72-titanium dioxide (TiO2) exhibits smaller charge transfer resistance and higher electron lifetime compared with the TiO2-based photoanode. The GO72 sample incorporating TiO2 nanocomposites achieves 6.25% photoconversion efficiency, indicating an increase of more than twice than that of the mesoporous TiO2 sample. This condition is fully attributed to the efficient absorption rate of nanocomposites and the reduction of the recombination rate of TiO2 by GO in dye-sensitized solar cells.


Assuntos
Corantes/química , Fontes de Energia Elétrica , Grafite/química , Energia Solar
7.
PLoS One ; 15(4): e0232490, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353051

RESUMO

Oily wastewater, especially water-oil emulsion has become serious environmental issue and received global attention. Chemical demulsifiers are widely used to treat oil-water emulsion, but the toxicity, non-recyclable and non-environmental friendly characteristic of chemical demulsifiers had limited their practical application in oil-water separation. Therefore, it is imperative to develop an efficient, simple, eco-friendly and recyclable demulsifiers for breaking up the emulsions from the oily wastewater. In this study, a magnetic demulsifier, magnetite-reduced graphene oxide (M-rGO) nanocomposites were proposed as a recyclable demulsifier to break up the surfactant stabilized crude oil-in-water (O/W) emulsion. M-rGO nanocomposites were prepared via in situ chemical synthesis by using only one type Fe salt and GO solid as precursor at room temperature. The prepared composites were fully characterized by various techniques. The effect of demulsifier dosage and pH of emulsion on demulsification efficiency (ED) has been studied in detailed. The demulsification mechanism was also proposed in this study. Results showed that M-rGO nanocomposites were able to demulsify crude O/W emulsion. The ED reaches 99.48% when 0.050 wt.% of M-rGO nanocomposites were added to crude O/W emulsion (pH = 4). Besides, M-rGO nanocomposites can be recycled up to 7 cycles without showing a significant change in terms of ED. Thus, M-rGO nanocomposite is a promising demulsifier for surfactant stabilized crude O/W emulsion.


Assuntos
Nanocompostos/química , Petróleo , Tensoativos/química , Águas Residuárias/química , Purificação da Água/métodos , Emulsões , Óxido Ferroso-Férrico/química , Grafite/química , Concentração de Íons de Hidrogênio , Oxirredução , Reciclagem
8.
RSC Adv ; 9(41): 24003-24014, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35530625

RESUMO

Oily wastewater from the oil and gas industry negatively affects the environment. Oily wastewater typically exists in the form of an oil-in-water emulsion. Conventional methods to treat oily wastewater have low separation efficiency and long separation time and use large equipment. Therefore, a simple but effective method must be developed to separate oil-in-water emulsions with high separation efficiency and short separation times. Magnetite-reduced graphene oxide (M-RGO) nanocomposites were used as a demulsifier in this work. Magnetite nanoparticles (Fe3O4) were coated on reduced graphene oxide (rGO) nanosheets via an in situ chemical synthesis method. The synthesized M-RGO nanocomposites are environmentally friendly and can be recovered after demulsification by an external magnetic field. M-RGO characterization was performed using X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, field emission scanning microscopy, Raman spectroscopy, and vibrating sample magnetometry. Demulsification performance was evaluated in terms of M-RGO dosage, effects of pH, and brine concentration. The demulsification capability of M-RGO was determined based on the residual oil content of the emulsion, which was measured with a UV-vis spectrometer. The response surface method was used to determine the optimum conditions of the input variables. The optimum demulsification efficiency achieved at pH 4 and M-RGO dosage of 29 g L-1 was approximately 96%. This finding demonstrates that M-RGO nanocomposites are potential magnetic demulsifiers for oily wastewater that contains oil-in-water emulsions. Also, the recyclability of this nanocomposite has been tested and the results shown that it is a good recyclable demulsifier.

9.
RSC Adv ; 9(64): 37686-37695, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-35542257

RESUMO

In this work, reduced graphene oxide (rGO) was fabricated at different reduction temperatures via an environmentally friendly solvothermal approach. The rGO formed at 160 °C clearly showed the partial restoration of the sp2 hybridization brought about by the elimination of oxygenated functionalities from the surface. Owing to the augmented surface area and the band gap reduction, rGO-160 exhibited the best adsorption (29.26%) and photocatalytic activity (32.68%) towards the removal of MB dye. The effects of catalyst loading, initial concentration of dye, light intensity, and initial pH of solution were evaluated. It was demonstrated that rGO-160 could achieve a higher adsorptive removal (87.39%) and photocatalytic degradation (98.57%) of MB dye when 60 mg of catalyst, 50 ppm of dye at pH 11, and 60 W m-2 of UV-C light source were used. The MB photodegradation activity of rGO-160 displayed no obvious decrease after five successive cycles. This study provides a potential metal-free adsorbent-cum-photocatalyst for the decontamination of dyes from wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA