Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Phys Chem Chem Phys ; 20(11): 7579-7587, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29493683

RESUMO

The reactivity of the H5PV2Mo10O40 polyoxometalate and its analogues as an electron transfer and electron transfer-oxygen transfer oxidant has been extensively studied in the past and has been shown to be useful in many transformations. One of the hallmarks of this oxidant is the possibility of its re-oxidation with molecular oxygen, thus enabling aerobic catalytic cycles. Although the re-oxidation reaction was known, the kinetics and mechanism of this reaction have not been studied in any detail. Experimentally, we show that both the one- and two-electron reduced polyoxometalate are reactive with O2, the two-electron one more so. The reactions are first-order in the polyoxometalate and O2. Solvents also have a considerable effect, protic solvents being preferred over aprotic ones. H5PV2Mo10O40 was reduced either by an electron transfer reaction (H2) or an electron transfer-oxygen transfer reaction (Ph3P). Similar rate constants and activation parameters were observed for both. DFT calculations carried out on the re-oxidation reactions strongly suggest an inner-sphere process. The process involves first the formation of a coordinatively unsaturated site (CUS) and subsequently the binding of O2 to form superoxo and then peroxo η2-O2 adducts. Most interestingly, although vanadium is the reactive redox centre as well as a necessary component for the oxidative activity of H5PV2Mo10O40, and a CUS can be formed at both Mo and V sites, O2 coordination occurs mostly at the Mo CUSs, preferably those where the vanadium centers are distal to each other.

2.
Angew Chem Int Ed Engl ; 57(19): 5403-5407, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29537140

RESUMO

The sustainable, selective direct hydroxylation of arenes, such as benzene to phenol, is an important research challenge. An electrocatalytic transformation using formic acid to oxidize benzene and its halogenated derivatives to selectively yield aryl formates, which are easily hydrolyzed by water to yield the corresponding phenols, is presented. The formylation reaction occurs on a Pt anode in the presence of [CoIII W12 O40 ]5- as a catalyst and lithium formate as an electrolyte via formation of a formyloxyl radical as the reactive species, which was trapped by a BMPO spin trap and identified by EPR. Hydrogen was formed at the Pt cathode. The sum transformation is ArH+H2 O→ArOH+H2 . Non-optimized reaction conditions showed a Faradaic efficiency of 75 % and selective formation of the mono-oxidized product in a 35 % yield. Decomposition of formic acid into CO2 and H2 is a side-reaction.

3.
Isr J Chem ; 57(10-11): 990-998, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29335656

RESUMO

The iron(II) triflate complex (1) of 1,2-bis(2,2'-bipyridyl-6-yl)ethane, with two bipyridine moieties connected by an ethane bridge, was prepared. Addition of aqueous 30% H2O2 to an acetonitrile solution of 1 yielded 2, a green compound with λmax=710 nm. Moessbauer measurements on 2 showed a doublet with an isomer shift (δ) of 0.35 mm/s and a quadrupole splitting (ΔEQ) of 0.86 mm/s, indicative of an antiferromagnetically coupled diferric complex. Resonance Raman spectra showed peaks at 883, 556 and 451 cm-1 that downshifted to 832, 540 and 441 cm-1 when 1 was treated with H218O2. All the spectroscopic data support the initial formation of a (µ-hydroxo)(µ-1,2-peroxo)diiron(III) complex that oxidizes carbon-hydrogen bonds. At 0°C 2 reacted with cyclohexene to yield allylic oxidation products but not epoxide. Weak benzylic C-H bonds of alkylarenes were also oxidized. A plot of the logarithms of the second order rate constants versus the bond dissociation energies of the cleaved C-H bond showed an excellent linear correlation. Along with the observation that oxidation of the probe substrate 2,2-dimethyl-1-phenylpropan-1-ol yielded the corresponding ketone but no benzaldehyde, and the kinetic isotope effect, kH/kD , of 2.8 found for the oxidation of xanthene, the results support the hypothesis for a metal-based H-atom abstraction mechanism. Complex 2 is a rare example of a (µ-hydroxo)(µ-1,2-peroxo)diiron(III) complex that can elicit the oxidation of carbon-hydrogen bonds.

4.
J Am Chem Soc ; 135(51): 19304-10, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24313591

RESUMO

The polyoxometalate H5PV2Mo10O40 mediates the insertion of an oxygen atom from H5PV2Mo10O40 into the tin-carbon bond of n-Bu4Sn through its activation by electron transfer to yield 1-butanol and (n-Bu3Sn)2O. The reaction is initiated by electron transfer from n-Bu4Sn to H5PV(V)2Mo10O40 to yield the ion pair n-Bu4Sn(•+)-H5PV(IV)V(V)Mo10O40. The H5PV(IV)V(V)Mo10O40 moiety was identified by UV-vis and EPR. DFT calculations show that n-Bu4Sn(•+)-H5PV(IV)V(V)Mo10O40 is relatively unstable and forms more stable Bu(+) and Bu3Sn(+) cations coordinated to the polyoxometalate, which were also identified by ESI-MS. Products are released at higher temperatures. In the presence of molecular oxygen as the terminal oxidant the reaction is catalytic.

5.
J Am Chem Soc ; 132(33): 11446-8, 2010 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-20669975

RESUMO

The oxygenation of sulfides to the corresponding sulfoxides catalyzed by H(5)PV(2)Mo(10)O(40) and other acidic vanadomolybdates has been shown to proceed by a low-temperature electron transfer-oxygen transfer (ET-OT) mechanism. First, a sulfide reacts with H(5)PV(2)Mo(10)O(40) to yield a cation radical-reduced polyoxometalate ion pair, R(2)(+*),H(5)PV(IV)V(V)Mo(10)O(40), that was identified by UV-vis spectroscopy (absorptions at 650 and 887 nm for PhSMe(+*) and H(5)PV(IV)V(V)Mo(10)O(40)) and EPR spectroscopy (quintet at g = 2.0079, A = 1.34 G for the thianthrene cation radical and the typical eight-line spectrum for V(IV)). Next, a precipitate is formed that shows by IR the incipient formation of the sulfoxide and by EPR a VO(2+) moiety supported on the polyoxometalate. Dissolution of this precipitate releases the sulfoxide product. ET-OT oxidation of diethylsulfide yielded crystals containing [V(O)(OSEt(2))(x)(solv)(5-x)](2+) cations and polyoxometalate anions. Under aerobic conditions, catalytic cycles can be realized with formation of mostly sulfoxide (90%) but also some disulfide (10%) via carbon-sulfide bond cleavage.


Assuntos
Molibdênio/química , Oxigênio/química , Sulfetos/química , Sulfóxidos/síntese química , Vanádio/química , Catálise , Transporte de Elétrons , Modelos Moleculares , Sulfóxidos/química
6.
Chemistry ; 16(4): 1356-64, 2010 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-20013770

RESUMO

A polyoxometalate of the Keggin structure substituted with Ru(III), (6)Q(5)[Ru(III)(H(2)O)SiW(11)O(39)] in which (6)Q=(C(6)H(13))(4)N(+), catalyzed the photoreduction of CO(2) to CO with tertiary amines, preferentially Et(3)N, as reducing agents. A study of the coordination of CO(2) to (6)Q(5)[Ru(III)(H(2)O)SiW(11)O(39)] showed that 1) upon addition of CO(2) the UV/Vis spectrum changed, 2) a rhombic signal was obtained in the EPR spectrum (g(x)=2.146, g(y)=2.100, and g(z)=1.935), and 3) the (13)C NMR spectrum had a broadened peak of bound CO(2) at 105.78 ppm (Delta(1/2)=122 Hz). It was concluded that CO(2) coordinates to the Ru(III) active site in both the presence and absence of Et(3)N to yield (6)Q(5)[Ru(III)(CO(2))SiW(11)O(39)]. Electrochemical measurements showed the reduction of Ru(III) to Ru(II) in (6)Q(5)[Ru(III)(CO(2))SiW(11)O(39)] at -0.31 V versus SCE, but no such reduction was observed for (6)Q(5)[Ru(III)(H(2)O)SiW(11)O(39)]. DFT-calculated geometries optimized at the M06/PC1//PBE/AUG-PC1//PBE/PC1-DF level of theory showed that CO(2) is preferably coordinated in a side-on manner to Ru(III) in the polyoxometalate through formation of a Ru-O bond, further stabilized by the interaction of the electrophilic carbon atom of CO(2) to an oxygen atom of the polyoxometalate. The end-on CO(2) bonding to Ru(III) is energetically less favorable but CO(2) is considerably bent, thus favoring nucleophilic attack at the carbon atom and thereby stabilizing the carbon sp(2) hybridization state. Formation of a O(2)C-NMe(3) zwitterion, in turn, causes bending of CO(2) and enhances the carbon sp(2) hybridization. The synergetic effect of these two interactions stabilizes both Ru-O and C-N interactions and probably determines the promotional effect of an amine on the activation of CO(2) by [Ru(III)(H(2)O)SiW(11)O(39)](5-). Electronic structure analysis showed that the polyoxometalate takes part in the activation of both CO(2) and Et(3)N. A mechanistic pathway for photoreduction of CO(2) is suggested based on the experimental and computed results.

7.
Chem Sci ; 11(42): 11584-11591, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34094405

RESUMO

In the past the formyloxyl radical, HC(O)O˙, had only been rarely experimentally observed, and those studies were theoretical-spectroscopic in the context of electronic structure. The absence of a convenient method for the preparation of the formyloxyl radical has precluded investigations into its reactivity towards organic substrates. Very recently, we discovered that HC(O)O˙ is formed in the anodic electrochemical oxidation of formic acid/lithium formate. Using a [CoIIIW12O40]5- polyanion catalyst, this led to the formation of phenyl formate from benzene. Here, we present our studies into the reactivity of electrochemically in situ generated HC(O)O˙ with organic substrates. Reactions with benzene and a selection of substituted derivatives showed that HC(O)O˙ is mildly electrophilic according to both experimentally and computationally derived Hammett linear free energy relationships. The reactions of HC(O)O˙ with terminal alkenes significantly favor anti-Markovnikov oxidations yielding the corresponding aldehyde as the major product as well as further oxidation products. Analysis of plausible reaction pathways using 1-hexene as a representative substrate favored the likelihood of hydrogen abstraction from the allylic C-H bond forming a hexallyl radical followed by strongly preferred further attack of a second HC(O)O˙ radical at the C1 position. Further oxidation products are surmised to be mostly a result of two consecutive addition reactions of HC(O)O˙ to the C[double bond, length as m-dash]C double bond. An outer-sphere electron transfer between the formyloxyl radical donor and the [CoIIIW12O40]5- polyanion acceptor forming a donor-acceptor [D+-A-] complex is proposed to induce the observed anti-Markovnikov selectivity. Finally, the overall reactivity of HC(O)O˙ towards hydrogen abstraction was evaluated using additional substrates. Alkanes were only slightly reactive, while the reactions of alkylarenes showed that aromatic substitution on the ring competes with C-H bond activation at the benzylic position. C-H bonds with bond dissociation energies (BDE) ≤ 85 kcal mol-1 are easily attacked by HC(O)O˙ and reactivity appears to be significant for C-H bonds with a BDE of up to 90 kcal mol-1. In summary, this research identifies the reactivity of HC(O)O˙ towards radical electrophilic substitution of arenes, anti-Markovnikov type oxidation of terminal alkenes, and indirectly defines the activity of HC(O)O˙ towards C-H bond activation.

8.
J Am Chem Soc ; 130(36): 11876-7, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18700761

RESUMO

It has been found that in apolar reaction media the nitrosonium cation (NO+) activated alkenes under mild conditions toward electrophilic substitution of arene substrates to yield the alkylated arene with Markovnikov orientation. In the absence of arenes the alkenes react with themselves to yield a mixture of dimeric alkenes. The nitrosonium cation can be dissolved in the reaction medium by using the tetrakis-(bis-(3,5-trifluromethyl)phenyl) borate anion, where upon the reactions occur effectively at 30 degrees C. Alternatively an insoluble, heterogeneous catalyst was prepared so as to yield a NO+ cation with a polyoxometalate (PW12O403-) anion. This catalyst was generally more effective and selective toward a broader range of substrates at 70 degrees C.

9.
J Am Chem Soc ; 130(44): 14474-6, 2008 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-18841966

RESUMO

Primary alcohols such as 1-butanol were oxidized by the H5PV2Mo10O40 polyoxometalate in an atypical manner. Instead of C-H bond activation leading to the formation of butanal and butanoic acid, C-C bond cleavage took place leading to the formation of propanal and formaldehyde as initial products. The latter reacted with the excess 1-butanol present to yield butylformate and butylpropanate in additional oxidative transformations. Kinetic studies including measurement of kinetic isotope effects, labeling studies with 18O labeled H5PV2Mo10O40, and observation of a prerate determining step intermediate by 13C NMR leads to the formulation of a reaction mechanism based on electron transfer from the substrate to the polyoxometalate and oxygen transfer from the reduced polyoxometalate to the organic substrate. It was also shown that vicinal diols such as 1,2-ethanediol apparently react by a similar reaction mechanism.

10.
Chem Commun (Camb) ; (24): 2529-38, 2006 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-16779469

RESUMO

The history of aerobic catalytic oxidation mediated by a subclass of polyoxometalates, the phosphovanadomolybdates of the Keggin structure, [PV(x)Mo(12-x)O40](3+x)-, is described. In the earlier research it was shown that phosphovanadomolybdates catalyze oxydehydrogenation reactions through an electron-transfer oxidation of a substrate by the polyoxometalate that is then reoxidized by oxygen. These aerobic oxidations are selective and synthetically useful in various transformations, notably diene aromatization, phenol dimerization and alcohol oxidation. Oxygen transfer from the polyoxometalate to arenes and alkylarenes was also discussed as a homogeneous analog of a Mars-van Krevelen oxidation. "Second generation" catalysts include binary complexes of the polyoxometalate and a organometallic compound useful, for example, for methane oxidation and nanoparticles stabilized by polyoxometalates effective for aerobic alkene epoxidation.

12.
J Am Chem Soc ; 127(28): 9988-9, 2005 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16011348

RESUMO

Nitrobenzene was regioselectively oxidized to 2-nitrophenol with oxygen in a reaction catalyzed by the H5PV2Mo10O40 polyoxometalate. The reaction was first order in oxygen and catalyst. 15N NMR showed the interaction between nitrobenzene and the polyoxometalate. Use of labeled 18O2, H218O, a competitive kinetic isotope experiment, and use of phenyl-tert-butylnitrone as a spin-trap and identification by EPR provided evidence for formation of a radical intermediate involving a selective intramolecular interaction at the ortho position due to formation of a H5PV2Mo10O40-nitrobenzene complex.

13.
J Am Chem Soc ; 127(50): 17712-8, 2005 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-16351100

RESUMO

This study uses density functional theory (DFT) calculations to explore the reactivity of the putative high-valent iron-oxo reagent of the iron-substituted polyoxometalate (POM-FeO4-), derived from the Keggin species, PW12O40(3-). It is shown that POM-FeO4- is in principle capable of C-H hydroxylation and C=C epoxidation and that it should be a powerful oxidant, even more so than the Compound I species of cytochrome P450. The calculations indicate that in a solvent, the barriers, and especially those for epoxidation, become sufficiently small that one may expect an extremely fast reaction. An experimental investigation (by R.N. and A.M.K.) shows, however, that the formation of POM-FeO4- using the oxygen donor, F5PhI-O, leads to a persistent adduct, POM-FeO-I-PhF5(4-), which does not decompose to POM-FeO4- + F5Ph-I at the working temperature and exhibits sluggish reactivity, in accord with previous experimental results (Hill, C. L.; Brown, R. B., Jr. J. Am. Chem. Soc. 1986, 108, 536 and Mansuy, D.; Bartoli, J.-F.; Battioni, P.; Lyon, D. K.; Finke, R. G. J. Am. Chem. Soc. 1991, 113, 7222). Subsequent calculations indeed reveal that the gas-phase binding energy of F5PhI to POM-FeO4- is high (ca. 20 kcal/mol) compared to the corresponding binding energy of propene (ca. 2-3 kcal/mol). As such, the POM-FeO-I-PhF5(4-) complex is expected to be persistent toward the displacement of F5PhI by a substrate like propene, leading thereby to sluggish oxidative reactivity. According to theory, overcoming this technical difficulty may turn out to be very rewarding. The question is, can POM-FeO4- be made?

14.
J Am Chem Soc ; 126(20): 6356-62, 2004 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-15149233

RESUMO

Alkylarenes were catalytically and selectively oxidized to the corresponding benzylic acetates and carbonyl products by nitrate salts in acetic acid in the presence of Keggin type molybdenum-based heteropolyacids, H(3+)(x)()PV(x)()Mo(12)(-)(x)()O(40) (x = 0-2). H(5)PV(2)Mo(10)O(40) was especially effective. For methylarenes there was no over-oxidation to the carboxylic acid contrary to what was observed for nitric acid as oxidant. The conversion to the aldehyde/ketone could be increased by the addition of water to the reaction mixture. As evidenced by IR and (15)N NMR spectroscopy, initially the nitrate salt reacted with H(5)PV(2)Mo(10)O(40) to yield a N(V)O(2)(+)[H(4)PV(2)Mo(10)O(40)] intermediate. In an electron-transfer reaction, the proposed N(V)O(2)(+)[H(4)PV(2)Mo(10)O(40)] complex reacts with the alkylarene substrate to yield a radical-cation-based donor-acceptor intermediate, N(IV)O(2)[H(4)PV(2)Mo(10)O(40)]-ArCH(2)R(+)(*). Concurrent proton transfer yields an alkylarene radical, ArCHR(*), and NO(2). Alternatively, it is possible that the N(V)O(2)(+)[H(4)PV(2)Mo(10)O(40)] complex abstracts a hydrogen atom from alkylarene substrate to directly yield ArCHR(*) and NO(2). The electron transfer-proton transfer and hydrogen abstraction scenarios are supported by the correlation of the reaction rate with the ionization potential and the bond dissociation energy at the benzylic positions of the alkylarene, respectively, the high kinetic isotope effect determined for substrates deuterated at the benzylic position, and the reaction order in the catalyst. Product selectivity in the oxidation of phenylcyclopropane tends to support the electron transfer-proton transfer pathway. The ArCHR(*) and NO(2) radical species undergo heterocoupling to yield a benzylic nitrite, which undergoes hydrolysis or acetolysis and subsequent reactions to yield benzylic acetates and corresponding aldehydes or ketones as final products.


Assuntos
Derivados de Benzeno/química , Nitratos/química , Óxidos/química , Acetatos/química , Aldeídos/química , Catálise , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Molibdênio/química , Oxirredução , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
15.
J Am Chem Soc ; 124(16): 4198-9, 2002 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-11960434

RESUMO

The polyoxomolydate of the Keggin structure, PMo12O403-, catalyzes, under anaerobic conditions, oxygen transfer from sulfoxides to alkylarenes such as xanthene and diphenylmethane to yield xanthen-9-one and benzophenone, respectively. With use of 17O and 18O labeled phenylmethylsulfoxide it was shown that the sulfoxide is complexed by the polyoxometalate and the oxygen is transferred from the sulfoxide to the alkylarene. There is a good correlation between the reaction rate and the heterolytic benzylic C-H bond energy indicating a hydride transfer reaction from the alkylarene to the polyoxometalate-sulfoxide complex. In the case of triphenylmethane the resulting carbocation reacts to yield 9-phenylfluorene as the major product. The reaction kinetics supports such a reaction pathway.


Assuntos
Molibdênio/química , Oxigênio/química , Hidrocarbonetos Policíclicos Aromáticos/química , Sulfóxidos/química , Xantonas , Catálise , Oxidantes/química , Oxirredução , Oxigênio/metabolismo , Sulfóxidos/metabolismo , Xantenos/química
16.
J Org Chem ; 67(20): 7075-9, 2002 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-12354002

RESUMO

Benzylic, allylic, and aliphatic alcohols are oxidized to aldehydes and ketones in a reaction catalyzed by Keggin-type polyoxomolybdates, PV(x)Mo(12-x)O(40)(-(3+x)) (x = 0, 2), with DMSO as a solvent. The oxidation of benzylic alcohols is quantitative within hours and selective, whereas that of allylic alcohols is less selective. Oxidation of aliphatic alcohols is slower but selective. Further mechanistic studies revealed that, for H(3)PMo(12)O(40) as a catalyst and benzylic alcohols as substrates, the sulfoxide is in fact an oxygen donor in the reaction. Postulated reaction steps as determined from isotope-labeling experiments, kinetic isotope effects, and Hammett plots include (a) sulfoxide activation by complexation to the polyoxometalate and (b) oxygen transfer from the activated sulfoxide and elimination of water from the alcohol. The mechanism is supported by the reaction kinetics.

17.
Inorg Chem ; 42(10): 3331-9, 2003 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-12739975

RESUMO

A new heptamolybdate polyoxometalate structure containing ruthenium(II) or osmium(II) metal centers, [M(II)(DMSO)(3)Mo(7)O(24)](4-) (M = Ru, Os), was synthesized by reaction between (NH(4))(6)Mo(7)O(24) and cis-M(DMSO)(4)Cl(2). X-ray structure analysis revealed the complexes to contain a ruthenium/osmium center in a trigonal antiprismatic coordination mode bound to three DMSO moieties via the sulfur atom of DMSO and three oxygen atoms of the new heptamolybdate species. The heptamolybdate consists of seven condensed edge-sharing MoO(6) octahedra with C(2v) symmetry. Three Mo atoms are in classic type II octahedra with a cis dioxo configuration. Two Mo atoms are also type-II-like, but one of the short Mo-O bonds is associated with bridging oxygen atoms rather than terminal oxygen atoms. Two molybdenum atoms are unique in that they are in a trigonally distorted octahedral configuration with three short Mo-O bonds and two intermediate-long M-O bonds and one long Mo-O bond. The [M(II)(DMSO)(3)Mo(7)O(24)](4-) polyoxometalates were effective and in some cases highly selective catalysts for the aerobic oxidation of alcohols to ketones/aldehydes. The integrity of the polyoxometalate was apparently retained at high turnover numbers and throughout the reaction, and a variation of an oxometal type mechanism was proposed to explain the results.

18.
J Am Chem Soc ; 126(33): 10236-7, 2004 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-15315423

RESUMO

We have demonstrated that a bipyrimidinylplatinum-polyoxometalate, [Pt(Mebipym)Cl2]+[H4PV2Mo10O40]-, supported on silica is an active catalyst for the aerobic oxidation of methane to methanol in water under mild reaction conditions. Further oxidation of methanol yields acetaldehyde. The presence of the polyoxometalate is presumed to allow the facile oxidation of a Pt(II) intermediate to a Pt(IV) intermediate and to aid in the addition of methane to the Pt catalytic center.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA