RESUMO
Glutathione (GSH) is necessary for maintaining physiological antioxidant function, which is responsible for maintaining free radicals derived from reactive oxygen species at low levels and is associated with improved cognitive performance after brain injury. GSH is produced by the linkage of tripeptides that consist of glutamic acid, cysteine, and glycine. The adequate supplementation of GSH has neuroprotective effects in several brain injuries such as cerebral ischemia, hypoglycemia, and traumatic brain injury. Brain injuries produce an excess of reactive oxygen species through complex biochemical cascades, which exacerbates primary neuronal damage. GSH concentrations are known to be closely correlated with the activities of certain genes such as excitatory amino acid carrier 1 (EAAC1), glutamate transporter-associated protein 3-18 (Gtrap3-18), and zinc transporter 3 (ZnT3). Following brain-injury-induced oxidative stress, EAAC1 function is negatively impacted, which then reduces cysteine absorption and impairs neuronal GSH synthesis. In these circumstances, vesicular zinc is also released into the synaptic cleft and then translocated into postsynaptic neurons. The excessive influx of zinc inhibits glutathione reductase, which inhibits GSH's antioxidant functions in neurons, resulting in neuronal damage and ultimately in the impairment of cognitive function. Therefore, in this review, we explore the overall relationship between zinc and GSH in terms of oxidative stress and neuronal cell death. Furthermore, we seek to understand how the modulation of zinc can rescue brain-insult-induced neuronal death after ischemia, hypoglycemia, and traumatic brain injury.
Assuntos
Antioxidantes , Lesões Encefálicas Traumáticas , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Glutationa/metabolismo , Estresse Oxidativo , Neurônios/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Morte CelularRESUMO
Maintaining the correct ionic gradient from extracellular to intracellular space via several membrane-bound transporters is critical for maintaining overall cellular homeostasis. One of these transporters is the transient receptor potential (TRP) channel family that consists of six putative transmembrane segments systemically expressed in mammalian tissues. Upon the activation of TRP channels by brain disease, several cations are translocated through TRP channels. Brain disease, especially ischemic stroke, epilepsy, and traumatic brain injury, triggers the dysregulation of ionic gradients and promotes the excessive release of neuro-transmitters and zinc. The divalent metal cation zinc is highly distributed in the brain and is specifically located in the pre-synaptic vesicles as free ions, usually existing in cytoplasm bound with metallothionein. Although adequate zinc is essential for regulating diverse physiological functions, the brain-disease-induced excessive release and translocation of zinc causes cell damage, including oxidative stress, apoptotic cascades, and disturbances in energy metabolism. Therefore, the regulation of zinc homeostasis following brain disease is critical for the prevention of brain damage. In this review, we summarize recent experimental research findings regarding how TRP channels (mainly TRPC and TRPM) and zinc are regulated in animal brain-disease models of global cerebral ischemia, epilepsy, and traumatic brain injury. The blockade of zinc translocation via the inhibition of TRPC and TRPM channels using known channel antagonists, was shown to be neuroprotective in brain disease. The regulation of both zinc and TRP channels may serve as targets for treating and preventing neuronal death.
Assuntos
Lesões Encefálicas Traumáticas , Isquemia Encefálica , Canais de Potencial de Receptor Transitório , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Zinco/metabolismo , Mamíferos/metabolismoRESUMO
Traumatic brain injury (TBI) broadly degrades the normal function of the brain after a bump, blow, or jolt to the head. TBI leads to the aggravation of pre-existing brain dysfunction and promotes neurotoxic cascades that involve processes such as oxidative stress, loss of dendritic arborization, and zinc accumulation. Acid sphingomyelinase (ASMase) is an enzyme that hydrolyzes sphingomyelin to ceramide in cells. Under normal conditions, ceramide plays an important role in various physiological functions, such as differentiation and apoptosis. However, under pathological conditions, excessive ceramide production is toxic and activates the neuronal-death pathway. Therefore, we hypothesized that the inhibition of ASMase activity by imipramine would reduce ceramide formation and thus prevent TBI-induced neuronal death. To test our hypothesis, an ASMase inhibitor, imipramine (10 mg/kg, i.p.), was administrated to rats immediately after TBI. Based on the results of this study, we confirmed that imipramine significantly reduced ceramide formation, dendritic loss, oxidative stress, and neuronal death in the TBI-imipramine group compared with the TBI-vehicle group. Additionally, we validated that imipramine prevented TBI-induced cognitive dysfunction and the modified neurological severity score. Consequently, we suggest that ASMase inhibition may be a promising therapeutic strategy to reduce hippocampal neuronal death after TBI.
Assuntos
Lesões Encefálicas Traumáticas , Imipramina , Animais , Ratos , Imipramina/farmacologia , Imipramina/uso terapêutico , Esfingomielina Fosfodiesterase/metabolismo , Ceramidas/metabolismo , Hipocampo/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Morte Celular , ApoptoseRESUMO
(1) Background and Purpose: Global cerebral ischemia-induced severe hypoxic brain damage is one of the main causes of mortality and long-term neurologic disability even after receiving early blood reperfusion. This study aimed to test the hypothesis that atorvastatin potentially has neuroprotective effects in global cerebral ischemia (GCI). (2) Methods: We performed two sets of experiments, analyzing acute (1-week) and chronic (4-week) treatments. For the vehicle (Veh) and statin treatments, 1 mL of 0.9% saline and 5 mg/kg of atorvastatin (ATOR) were administered orally. For histological analysis, we used the following staining protocols: Fluoro-Jade B and NeuN, 4-hydroxynonenal, CD11b and GFAP, IgG, SMI71, and vWF. Finally, we evaluated the cognitive function with a battery of behavioral tests. (3) Results: The GCI-ATOR group showed significantly reduced neuronal death, oxidative stress, inflammation, and BBB disruption compared with the GCI-Veh group. Moreover, the GCI-ATOR group showed decreased endothelial damage and VV proliferation and had significantly improved cognitive function compared with the GCI-Veh group in both models. (4) Conclusions: ATOR has neuroprotective effects and helps recover the cognitive function after GCI in rats. Therefore, administration of atorvastatin may be a therapeutic option in managing GCI after CA.
Assuntos
Atorvastatina/farmacologia , Isquemia Encefálica/complicações , Transtornos Cognitivos/tratamento farmacológico , Inflamação/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Comportamento Animal , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inflamação/etiologia , Inflamação/patologia , Masculino , Neurônios/patologia , Ratos , Ratos Sprague-DawleyRESUMO
Insulin is a critical signaling molecule in reducing blood glucose levels, and pyruvate dehydrogenase (PDH) is an essential enzyme in regulating glucose metabolism. However, the insulin effect on PDH function has not been well established. We observed that insulin attenuated the phosphorylation (p) of Ser264 (p-Ser264) in the PDH E1α subunit (PDHA1) in normal rat hepatocyte. In contrast, insulin induced an increase of p-Ser264 PDHA1 levels in hepatocellular carcinoma HepG2 and Huh7 cells. Insulin activated RhoA and Rho-dependent coiled coil kinase, an effector protein of active RhoA, which regulated p-Ser264 PDHA1 levels, along with both p-Ser9 and p-Tyr216 forms of glycogen synthase kinase-3ß (GSK-3ß) in HepG2 cells. Only p-Tyr216 GSK-3ß, the active form was involved in an increase of p-Ser264 PDHA1. Akt was also engaged in p-Ser9 of GSK-3ß, but neither in p-Tyr216 of GSK-3ß nor p-Ser264 of PDHA1 upon insulin. Reconstituted dephospho-mimic forms PDHA1 S264A and GSK-3ß Y216F impaired, but wild-types PDHA1 and GSK-3ß and phospho-mimic forms PDHA1 S264D and GSK-3ß Y216E increased cell proliferation upon insulin through expression of c-Myc and cyclin D1. Therefore, we propose that insulin-mediated p-PDHA1 is involved in the regulation of HepG2 cell proliferation through RhoA signaling pathway.-Islam, R., Kim, J.-G., Park, Y., Cho, J.-Y., Cap, K.-C., Kho, A.-R., Chung, W.-S., Suh, S.-W., Park, J.-B. Insulin induces phosphorylation of pyruvate dehydrogenase through RhoA activation pathway in HepG2 cells.
Assuntos
Proliferação de Células/efeitos dos fármacos , Insulina/farmacologia , Piruvato Desidrogenase (Lipoamida)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Proliferação de Células/genética , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Hep G2 , Humanos , Mutação de Sentido Incorreto , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvato Desidrogenase (Lipoamida)/genética , Ratos , Transdução de Sinais/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genéticaRESUMO
Traumatic brain injury (TBI) can cause physical, cognitive, social, and behavioral changes that can lead to permanent disability or death. After primary brain injury, translocated free zinc can accumulate in neurons and lead to secondary events such as oxidative stress, inflammation, edema, swelling, and cognitive impairment. Under pathological conditions, such as ischemia and TBI, excessive zinc release, and accumulation occurs in neurons. Based on previous research, it hypothesized that calcium as well as zinc would be influx into the TRPC5 channel. Therefore, we hypothesized that the suppression of TRPC5 would prevent neuronal cell death by reducing the influx of zinc and calcium. To test our hypothesis, we used a TBI animal model. After the TBI, we immediately injected NU6027 (1 mg/kg, intraperitoneal), TRPC5 inhibitor, and then sacrificed animals 24 h later. We conducted Fluoro-Jade B (FJB) staining to confirm the presence of degenerating neurons in the hippocampal cornus ammonis 3 (CA3). After the TBI, the degenerating neuronal cell count was decreased in the NU6027-treated group compared with the vehicle-treated group. Our findings suggest that the suppression of TRPC5 can open a new therapeutic window for a reduction of the neuronal death that may occur after TBI.
Assuntos
Lesões Encefálicas Traumáticas/patologia , Morte Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Compostos Nitrosos/farmacologia , Pirimidinas/farmacologia , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Contagem de Células , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Neurônios/patologia , Neurônios/fisiologia , Compostos Nitrosos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPC/antagonistas & inibidores , Zinco/metabolismoRESUMO
Acidosis in the brain plays an important role in neuronal injury and is a common feature of several neurological diseases. It has been reported that the sodium-hydrogen exchanger-1 (NHE-1) is a key mediator of acidosis-induced neuronal injury. It modulates the concentration of intra- and extra-cellular sodium and hydrogen ions. During the ischemic state, excessive sodium ions enter neurons and inappropriately activate the sodium-calcium exchanger (NCX). Zinc can also enter neurons through voltage-gated calcium channels and NCX. Here, we tested the hypothesis that zinc enters the intracellular space through NCX and the subsequent zinc accumulation induces neuronal cell death after global cerebral ischemia (GCI). Thus, we conducted the present study to confirm whether inhibition of NHE-1 by amiloride attenuates zinc accumulation and subsequent hippocampus neuronal death following GCI. Mice were subjected to GCI by bilateral common carotid artery (BCCA) occlusion for 30 min, followed by restoration of blood flow and resuscitation. Amiloride (10 mg/kg, intraperitoneally (i.p.)) was immediately injected, which reduced zinc accumulation and neuronal death after GCI. Therefore, the present study demonstrates that amiloride attenuates GCI-induced neuronal injury, likely via the prevention of intracellular zinc accumulation. Consequently, we suggest that amiloride may have a high therapeutic potential for the prevention of GCI-induced neuronal death.
Assuntos
Acidose/prevenção & controle , Amilorida/administração & dosagem , Isquemia Encefálica/tratamento farmacológico , Bloqueadores do Canal de Sódio Epitelial/administração & dosagem , Hipocampo/metabolismo , Zinco/metabolismo , Acidose/etiologia , Acidose/metabolismo , Amilorida/farmacologia , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/metabolismo , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Hipocampo/efeitos dos fármacos , Injeções Intraperitoneais , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacosRESUMO
Transient receptor potential melastatin 7 (TRPM7) is an ion channel that mediates monovalent cations out of cells, as well as the entry of divalent cations, such as zinc, magnesium, and calcium, into the cell. It has been reported that inhibitors of TRPM7 are neuroprotective in various neurological diseases. Previous studies in our lab suggested that seizure-induced neuronal death may be caused by the excessive release of vesicular zinc and the subsequent accumulation of zinc in the neurons. However, no studies have evaluated the effects of carvacrol and 2-aminoethoxydiphenyl borate (2-APB), both inhibitors of TRPM7, on the accumulation of intracellular zinc in dying neurons following seizure. Here, we investigated the therapeutic efficacy of carvacrol and 2-APB against pilocarpine-induced seizure. Carvacrol (50 mg/kg) was injected once per day for 3 or 7 days after seizure. 2-APB (2 mg/kg) was also injected once per day for 3 days after seizure. We found that inhibitors of TRPM7 reduced seizure-induced TRPM7 overexpression, intracellular zinc accumulation, and reactive oxygen species production. Moreover, there was a suppression of oxidative stress, glial activation, and the blood-brain barrier breakdown. In addition, inhibitors of TRPM7 remarkably decreased apoptotic neuron death following seizure. Taken together, the present study demonstrates that TRPM7-mediated zinc translocation is involved in neuron death after seizure. The present study suggests that inhibitors of TRPM7 may have high therapeutic potential to reduce seizure-induced neuron death.
Assuntos
Compostos de Boro/administração & dosagem , Cimenos/administração & dosagem , Neurônios/metabolismo , Convulsões/prevenção & controle , Canais de Cátion TRPM/metabolismo , Zinco/metabolismo , Animais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Compostos de Boro/farmacologia , Cimenos/farmacologia , Modelos Animais de Doenças , Masculino , Neurônios/efeitos dos fármacos , Pilocarpina/efeitos adversos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Resultado do TratamentoRESUMO
A variety of pathogenic mechanisms, such as cytoplasmic calcium/zinc influx, reactive oxygen species production, and ionic imbalance, have been suggested to play a role in cerebral ischemia induced neurodegeneration. During the ischemic state that occurs after stroke or heart attack, it is observed that vesicular zinc can be released into the synaptic cleft, and then translocated into the cytoplasm via various cation channels. Transient receptor potential melastatin 2 (TRPM2) is highly distributed in the central nervous system and has high sensitivity to oxidative damage. Several previous studies have shown that TRPM2 channel activation contributes to neuroinflammation and neurodegeneration cascades. Therefore, we examined whether anti-oxidant treatment, such as with N-acetyl-l-cysteine (NAC), provides neuroprotection via regulation of TRPM2, following global cerebral ischemia (GCI). Experimental animals were then immediately injected with NAC (150 mg/kg/day) for 3 and 7 days, before sacrifice. We demonstrated that NAC administration reduced activation of GCI-induced neuronal death cascades, such as lipid peroxidation, microglia and astroglia activation, free zinc accumulation, and TRPM2 over-activation. Therefore, modulation of the TRPM2 channel can be a potential therapeutic target to prevent ischemia-induced neuronal death.
Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Isquemia Encefálica/tratamento farmacológico , Neurônios/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos , Canais de Cátion TRPM/antagonistas & inibidores , Zinco/metabolismoRESUMO
Ischemic and traumatic brain injuries are the major acute central nervous system disorders that need to be adequately diagnosed and treated. To find biomarkers for these acute brain injuries, plasma levels of some specialized pro-resolving mediators (SPMs, i.e., lipoxin A4 [LXA4], resolvin [Rv] E1, RvE2, RvD1 and RvD2), CD59 and interleukin (IL)-6 were measured at 0, 6, 24, 72, and 168 h after global cerebral ischemic (GCI) and traumatic brain injuries (TBI) in rats. Plasma LXA4 levels tended to increase at 24 and 72 h after GCI. Plasma RvE1, RvE2, RvD1, and RvD2 levels showed a biphasic response to GCI; a significant decrease at 6 h with a return to the levels of the sham group at 24 h, and again a decrease at 72 h. Plasma CD59 levels increased at 6 and 24 h post-GCI, and returned to basal levels at 72 h post-GCI. For TBI, plasma LXA4 levels tended to decrease, while RvE1, RvE2, RvD1, and RvD2 showed barely significant changes. Plasma IL-6 levels were significantly increased after GCI and TBI, but with different time courses. These results show that plasma LXA4, RvE1, RvE2, RvD1, RvD2, and CD59 levels display differential responses to GCI and TBI, and need to be evaluated for their usefulness as biomarkers.
RESUMO
Global cerebral ischemia (GCI) is one of the main causes of hippocampal neuronal death. Ischemic damage can be rescued by early blood reperfusion. However, under some circumstances reperfusion itself can trigger a cell death process that is initiated by the reintroduction of blood, followed by the production of superoxide, a bloodâ»brain barrier (BBB) disruption and microglial activation. Protocatechuic acid (PCA) is a major metabolite of the antioxidant polyphenols, which have been discovered in green tea. PCA has been shown to have antioxidant effects on healthy cells and anti-proliferative effects on tumor cells. To test whether PCA can prevent ischemia-induced hippocampal neuronal death, rats were injected with PCA (30 mg/kg/day) per oral (p.o) for one week after global ischemia. To evaluate degenerating neurons, oxidative stress, microglial activation and BBB disruption, we performed Fluoro-Jade B (FJB), 4-hydroxynonenal (4HNE), CD11b, GFAP and IgG staining. In the present study, we found that PCA significantly decreased degenerating neuronal cell death, oxidative stress, microglial activation, astrocyte activation and BBB disruption compared with the vehicle-treated group after ischemia. In addition, an ischemia-induced reduction in glutathione (GSH) concentration in hippocampal neurons was recovered by PCA administration. Therefore, the administration of PCA may be further investigated as a promising tool for decreasing hippocampal neuronal death after global cerebral ischemia.
Assuntos
Isquemia Encefálica/tratamento farmacológico , Hipocampo/patologia , Hidroxibenzoatos/uso terapêutico , Neurônios/patologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/prevenção & controle , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Glutationa/metabolismo , Hidroxibenzoatos/farmacologia , Inflamação/patologia , Espaço Intracelular/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Zinco/metabolismoRESUMO
Protocatechuic acid (PCA) is a type of phenolic acid found in green tea and has been shown to have potent antioxidant and anti-inflammatory properties. However, the effect of PCA on pilocarpine seizure-induced neuronal death in the hippocampus has not been evaluated. In the present study, we investigated the potential therapeutic effects of PCA on seizure-induced brain injury. Epileptic seizure was induced by intraperitoneal (i.p.) injection of pilocarpine (25 mg/kg) in adult male rats, and PCA (30 mg/kg) was injected into the intraperitoneal space for three consecutive days after the seizure. Neuronal injury and oxidative stress were evaluated three days after a seizure. To confirm whether PCA increases neuronal survival and reduced oxidative injury in the hippocampus, we performed Fluoro-Jade-B (FJB) staining to detect neuronal death and 4-hydroxynonenal (4HNE) staining to detect oxidative stress after the seizure. In the present study, we found that, compared to the seizure vehicle-treated group, PCA administration reduced neuronal death and oxidative stress in the hippocampus. To verify whether a decrease of neuronal death by PCA treatment was due to reduced glutathione (GSH) concentration, we measured glutathione with N-ethylmaleimide (GS-NEM) levels in hippocampal neurons. A seizure-induced reduction in the hippocampal neuronal GSH concentration was preserved by PCA treatment. We also examined whether microglia activation was affected by the PCA treatment after a seizure, using CD11b staining. Here, we found that seizure-induced microglia activation was significantly reduced by the PCA treatment. Therefore, the present study demonstrates that PCA deserves further investigation as a therapeutic agent for reducing hippocampal neuronal death after epileptic seizures.
Assuntos
Antioxidantes/farmacologia , Epilepsia/patologia , Hidroxibenzoatos/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Antioxidantes/administração & dosagem , Morte Celular , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Hidroxibenzoatos/administração & dosagem , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Estresse Oxidativo , Pilocarpina/toxicidade , Ratos , Ratos Sprague-DawleyRESUMO
Apocynin, also known as acetovanillone, is a natural organic compound structurally related to vanillin. Apocynin is known to be an inhibitor of NADPH (Nicotinamide adenine dinucleotide phosphate) oxidase activity and is highly effective in suppressing the production of superoxide. The neuroprotective effects of apocynin have been investigated in numerous brain injury settings, such as stroke, traumatic brain injury (TBI), and epilepsy. Our lab has demonstrated that TBI or seizure-induced oxidative injury and neuronal death were reduced by apocynin treatment. Several studies have also demonstrated that neuroblast production is transiently increased in the hippocampus after seizures. Here, we provide evidence confirming the hypothesis that long-term treatment with apocynin may enhance newly generated hippocampal neuronal survival by reduction of superoxide production after seizures. A seizure was induced by pilocarpine [(25 mg/kg intraperitoneal (i.p.)] injection. Apocynin was continuously injected for 4 weeks after seizures (once per day) into the intraperitoneal space. We evaluated neuronal nuclear antigen (NeuN), bromodeoxyuridine (BrdU), and doublecortin (DCX) immunostaining to determine whether treatment with apocynin increased neuronal survival and neurogenesis in the hippocampus after seizures. The present study indicates that long-term treatment of apocynin increased the number of NeuN⺠and DCX⺠cells in the hippocampus after seizures. Therefore, this study suggests that apocynin treatment increased neuronal survival and neuroblast production by reduction of hippocampal oxidative injury after seizures.
Assuntos
Acetofenonas/farmacologia , Hipocampo/metabolismo , NADPH Oxidases/metabolismo , Neurogênese , Convulsões/metabolismo , Animais , Antígenos Nucleares/metabolismo , Biomarcadores , Lesões Encefálicas/complicações , Proteína Duplacortina , Hipocampo/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Convulsões/tratamento farmacológico , Convulsões/patologia , Fatores de TempoRESUMO
Type 1 and type 2 diabetic patients who are treated with insulin or other blood glucose reducing agents for tight control of blood glucose levels are frequently at risk of experiencing severe hypoglycemia which can lead to seizures, loss of consciousness and death. Hypoglycemic neuronal cell death is not a simple result of low glucose supply to the brain, but, instead, results from a cell death signaling pathway that is started by the re-administration of glucose after glucose deprivation. Zinc is a biologically important element for physiological function of central nervous system. However, excessive zinc release from the presynaptic terminals and subsequent translocation into the postsynaptic neurons may contribute to neuronal death following hypoglycemia. N-acetyl-L-cysteine (NAC) acts as a zinc chelator that alleviates zinc-induced neuronal death processes. In addition, NAC restores levels of neuronal glutathione (GSH), a potent antioxidant, by providing a cell-permeable source of cysteine. Thus, we hypothesized that NAC treatment can reduce neuronal cell death, not only by increasing GSH concentration but also by zinc chelation. As a result, we found that NAC decreased the oxidative stress, zinc release and translocation, and improved the level of glutathione. Therefore, NAC administration alleviated hippocampal neuron death in hypoglycemia-induced rats.
Assuntos
Acetilcisteína/farmacologia , Hipocampo/patologia , Hipoglicemia/patologia , Neurônios/efeitos dos fármacos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipoglicemia/tratamento farmacológico , Hipoglicemia/metabolismo , Masculino , Microglia/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos Sprague-Dawley , Zinco/metabolismoRESUMO
Protocatechuic acid (PCA) was first purified from green tea and has shown numerous biological activities, including anti-apoptotic, anti-inflammatory, and anti-atherosclerotic effects. The effect of PCA on traumatic brain injury (TBI)-induced neuronal death has not previously been evaluated. TBI is defined as damage to the brain resulting from external mechanical force, such as rapid acceleration or deceleration, impact, blast waves, or penetration by a projectile. TBI causes neuronal death in the hippocampus and cerebral cortex. The present study aimed to evaluate the therapeutic potential of PCA on TBI-induced neuronal death. Here, TBI was induced by a controlled cortical impact model using rats. PCA (30 mg/kg) was injected into the intraperitoneal (ip) space immediately after TBI. Neuronal death was evaluated with Fluoro Jade-B (FJB) staining at 24 h after TBI. Oxidative injury was detected by 4-hydroxy-2-nonenal (4HNE), glutathione (GSH) concentration was analyzed by glutathione adduct with N-ethylmaleimide (GS-NEM) staining at 24 h after TBI, and microglial activation in the hippocampus was detected by CD11b immunohistochemistry at one week after TBI. We found that the proportion of degenerating neurons, oxidative injury, GSH depletion, and microglia activation in the hippocampus and cortex were all reduced by PCA treatment following TBI. Therefore, our study suggests that PCA may have therapeutic potential in preventing TBI-induced neuronal death.
Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Morte Celular/efeitos dos fármacos , Hidroxibenzoatos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Contagem de Células , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RatosRESUMO
The effects of zinc supplementation on hippocampal neurogenesis in diabetes mellitus have not been studied. Herein, we investigated the effects of zinc plus cyclo-(His-Pro) (ZC) on neurogenesis occurring in the subgranular zone of dentate gyrus after streptozotocin (STZ)-induced diabetes. ZC (27 mg/kg) was administered by gavage once daily for one or six weeks from the third day after the STZ injection, and histological evaluation was performed at 10 (early phase) or 45 (late phase) days after STZ injection. We found that the proliferation of progenitor cells in STZ-induced diabetic rats showed an increase in the early phase. Additionally, ZC treatment remarkably increased the number of neural progenitor cells (NPCs) and immature neurons in the early phase of STZ-induced diabetic rats. Furthermore, ZC treatment showed increased survival rate of newly generated cells but no difference in the level of neurogenesis in the late phase of STZ-induced diabetic rats. The present study demonstrates that zinc supplementation by ZC increases both NPCs proliferation and neuroblast production at the early phase of diabetes. Thus, this study suggests that zinc supplemented with a histidine/proline complex may have beneficial effects on neurogenesis in patients experiencing the early phase of Type 1 diabetes.
Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/fisiopatologia , Dipeptídeos/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Neurogênese/efeitos dos fármacos , Zinco/uso terapêutico , Animais , Proliferação de Células/efeitos dos fármacos , Hipocampo/citologia , Masculino , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Ratos Sprague-Dawley , EstreptozocinaRESUMO
Epileptic seizures are short episodes of abnormal brain electrical activity. Many survivors of severe epilepsy display delayed neuronal death and permanent cognitive impairment. Donepezil is an acetylcholinesterase inhibitor and is an effective treatment agent for Alzheimer's disease. However, the role of donepezil in seizure-induced hippocampal injury remains untested. Temporal lobe epilepsy (TLE) was induced by intraperitoneal injection of pilocarpine (25 mg/kg). Donepezil (2.5 mg/kg/day) was administered by gavage in three different settings: (1) pretreatment for three days before the seizure; (2) for one week immediately after the seizure; and (3) for three weeks from three weeks after the seizure. We found that donepezil showed mixed effects on seizure-induced brain injury, which were dependent on the treatment schedule. Pretreatment with donepezil aggravated neuronal death, oxidative injury, and microglia activation. Early treatment with donepezil for one week showed neither adverse nor beneficial effects; however, a treatment duration of three weeks starting three weeks after the seizure showed a significant reduction in neuronal death, oxidative injury, and microglia activation. In conclusion, donepezil has therapeutic effects when injected for three weeks after seizure activity subsides. Therefore, the present study suggests that the therapeutic use of donepezil for epilepsy patients requires a well-conceived strategy for administration.
Assuntos
Morte Celular/efeitos dos fármacos , Inibidores da Colinesterase/uso terapêutico , Epilepsia do Lobo Temporal/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Indanos/uso terapêutico , Neurônios/efeitos dos fármacos , Piperidinas/uso terapêutico , Convulsões/tratamento farmacológico , Animais , Inibidores da Colinesterase/administração & dosagem , Modelos Animais de Doenças , Donepezila , Esquema de Medicação , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/patologia , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/patologia , Indanos/administração & dosagem , Masculino , Neurônios/metabolismo , Neurônios/patologia , Nootrópicos/administração & dosagem , Nootrópicos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Pilocarpina , Piperidinas/administração & dosagem , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/patologiaRESUMO
The present study aimed to evaluate the role of zinc transporter 3 (ZnT3) on multiple sclerosis (MS) pathogenesis. Experimental autoimmune encephalomyelitis (EAE), a disease model of multiple sclerosis, was induced by immunization with myelin oligodendrocyte glycoprotein (MOG35-55) in female mice. Three weeks after the initial immunization, demyelination, immune cell infiltration and blood brain barrier (BBB) disruption in the spinal cord were analyzed. Clinical signs of EAE first appeared on day 11 and reached a peak level on day 19 after the initial immunization. ZnT3 gene deletion profoundly reduced the daily clinical score of EAE. The ZnT3 gene deletion-mediated inhibition of the clinical course of EAE was accompanied by suppression of inflammation and demyelination in the spinal cord. The motor deficit accompanying neuropathological changes associated with EAE were mild in ZnT3 gene deletion mice. This reduction in motor deficit was accompanied by coincident reductions in demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, CD20+ B cells and F4/80+ microglia in the spinal cord. These results demonstrate that ZnT3 gene deletion inhibits the clinical features and neuropathological changes associated with EAE. ZnT3 gene deletion also remarkably inhibited formation of EAE-associated aberrant synaptic zinc patches, matrix metalloproteinases-9 (MMP-9) activation and BBB disruption. Therefore, amelioration of EAE-induced clinical and neuropathological changes by ZnT3 gene deletion suggests that vesicular zinc may be involved in several steps of MS pathogenesis.
Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Esclerose Múltipla/metabolismo , Glicoproteína Mielina-Oligodendrócito/farmacologia , Medula Espinal/metabolismo , Substância Branca/patologia , Animais , Proteínas de Transporte de Cátions , Modelos Animais de Doenças , Feminino , Proteínas de Membrana/deficiência , Proteínas de Membrana Transportadoras , Camundongos Knockout , Microglia/patologia , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/farmacologia , Medula Espinal/patologia , Substância Branca/metabolismoRESUMO
Excitatory amino acid carrier type 1 (EAAC1), a high-affinity glutamate transporter, can expend energy to move glutamate into neurons. However, under normal physiological conditions, EAAC1 does not have a great effect on glutamate clearance but rather participates in the neuronal uptake of cysteine. This process is critical to maintaining neuronal antioxidant function by providing cysteine for glutathione synthesis. Previous study showed that mice lacking EAAC1 show increased neuronal oxidative stress following transient cerebral ischemia. In the present study, we sought to characterize the role of EAAC1 in neuronal resistance after traumatic brain injury (TBI). Young adult C57BL/6 wild-type or EAAC1 (-/-) mice were subjected to a controlled cortical impact model for TBI. Neuronal death after TBI showed more than double the number of degenerating neurons in the hippocampus in EAAC1 (-/-) mice compared with wild-type mice. Superoxide production, zinc translocation and microglia activation similarly showed a marked increase in the EAAC1 (-/-) mice. Pretreatment with N-acetyl cysteine (NAC) reduced TBI-induced neuronal death, superoxide production and zinc translocation. These findings indicate that cysteine uptake by EAAC1 is important for neuronal antioxidant function and survival following TBI. This study also suggests that administration of NAC has therapeutic potential in preventing TBI-induced neuronal death.
Assuntos
Acetilcisteína , Lesões Encefálicas Traumáticas/metabolismo , Transportador 3 de Aminoácido Excitatório/deficiência , Deleção de Genes , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacocinética , Acetilcisteína/farmacologia , Animais , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Camundongos , Camundongos Knockout , Neurônios/patologia , Estresse Oxidativo/genéticaRESUMO
BACKGROUND: To evaluate the role of NADPH oxidase-mediated reactive oxygen species (ROS) production in multiple sclerosis pathogenesis, we examined the effects of apocynin, an NADPH oxidase assembly inhibitor, on experimental autoimmune encephalomyelitis (EAE). METHODS: EAE was induced by immunization with myelin oligodendrocyte glycoprotein (MOG (35-55)) in C57BL/6 female mice. Three weeks after initial immunization, the mice were analyzed for demyelination, immune cell infiltration, and ROS production. Apocynin (30 mg/kg) was given orally once daily for the entire experimental course or after the typical onset of clinical symptom (15 days after first MOG injection). RESULTS: Clinical signs of EAE first appeared on day 11 and reached a peak level on day 19 after the initial immunization. The daily clinical symptoms of EAE mice were profoundly reduced by apocynin. The apocynin-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination, reduced infiltration by encephalitogenic immune cells including CD4, CD8, CD20, and F4/80-positive cells. Apocynin reduced MOG-induced pro-inflammatory cytokines in cultured microglia. Apocynin also remarkably inhibited EAE-associated ROS production and blood-brain barrier (BBB) disruption. Furthermore, the present study found that post-treatment with apocynin also reduced the clinical course of EAE and spinal cord demyelination. CONCLUSIONS: These results demonstrate that apocynin inhibits the clinical features and neuropathological changes associated with EAE. Therefore, the present study suggests that inhibition of NADPH oxidase activation by apocynin may have a high therapeutic potential for treatment of multiple sclerosis pathogenesis.