Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003572

RESUMO

Behçet's disease (BD) is a complex, recurring inflammatory disorder with autoinflammatory and autoimmune components. This comprehensive review aims to explore BD's pathogenesis, focusing on established genetic factors. Studies reveal that HLA-B*51 is the primary genetic risk factor, but non-HLA genes (ERAP1, IL-10, IL23R/IL-12RB2), as well as innate immunity genes (FUT2, MICA, TLRs), also contribute. Genome-wide studies emphasize the significance of ERAP1 and HLA-I epistasis. These variants influence antigen presentation, enzymatic activity, and HLA-I peptidomes, potentially leading to distinct autoimmune responses. We conducted a systematic review of the literature to identify studies exploring the association between HLA-B*51 and BD and further highlighted the roles of innate and adaptive immunity in BD. Dysregulations in Th1/Th2 and Th17/Th1 ratios, heightened clonal cytotoxic (CD8+) T cells, and reduced T regulatory cells characterize BD's complex immune responses. Various immune cell types (neutrophils, γδ T cells, natural killer cells) further contribute by releasing cytokines (IL-17, IL-8, GM-CSF) that enhance neutrophil activation and mediate interactions between innate and adaptive immunity. In summary, this review advances our understanding of BD pathogenesis while acknowledging the research limitations. Further exploration of genetic interactions, immune dysregulation, and immune cell roles is crucial. Future studies may unveil novel diagnostic and therapeutic strategies, offering improved management for this complex disease.


Assuntos
Síndrome de Behçet , Humanos , Apresentação de Antígeno , Predisposição Genética para Doença , Antígenos HLA-B , Fatores de Risco , Aminopeptidases/genética , Antígenos de Histocompatibilidade Menor/genética
2.
Biomater Res ; 24: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161662

RESUMO

BACKGROUND: Tretinoin or all-trans retinoic acid is used in the treatment of acne vulgaris and photo-aging. This work aims to develop tretinoin-loaded nanofibers as a potential anti-acne patch and to investigate its physicochemical characteristics. METHOD: Nanofibers were produced via electrospinning method and surface topography was evaluated by Field Emission Scanning Electron Microscopy (FESEM). The functional groups of polymer and the drug molecule and the possible interactions were studied by Fourier Transform Infrared Spectroscopy (FTIR). Drug release studies were carried out by total immersion method at 25 °C and 32 °C. Tretinoin stability was evaluated at room temperature and fridge for 45 days. The possibility of synergistic antibacterial activity of tretinoin and erythromycin combination was investigated on Staphylococcus aureus (ATCC® 25923™) and (ATCC® 29213™) by Kirby Bauer disc diffusion method. RESULTS: Uniform fibers without drug crystals were fabricated via electrospinning. Drug-loaded nanofibers show inherent stability under various storage conditions. Electrospun nanofibers showed a prolonged release of tretinoin. The stability of formulations in FT was higher than RT. Disc diffusion tests did not show any synergism in the antibacterial activity of erythromycin when used in combination with tretinoin. CONCLUSION: It can be anticipated that the easy fabrication, low costs and dosing frequency of the construct reported here provide a platform that can be adapted for on-demand delivery of tretinoin.

3.
Turk J Chem ; 44(6): 1723-1732, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488265

RESUMO

In this study, boric acid (BA) is employed as a crosslinking agent to improve the characteristics of two commonly used polymeric films, ethyl cellulose (EC) and polyvinyl alcohol (PVA), for topical drug delivery applications. The developed films are characterized by FTIR spectroscopy and SEM analysis. The results show that the surfaces of the prepared films are even and transparent, except for the BA-modified EC sample. The initial cumulative release for erythromycin (EM) is found to be 0.30 and 0.36 mg/mL for EC and PVA films, which drops to 0.25 and 0.20 mg/mL after BA crosslinking, respectively, after 1 h at 25 °C. Further, the developed formulations are stable for 75 days. Also, the antibacterial activity of the developed formulations is investigated against S. aureus (ATCC® 25923™ and ATCC® 29213™). The obtained data confirm that the application of BA as the crosslinking agent extends the release of EM from EC and PVA polymeric films. The findings of this study suggest that BA-crosslinked EC and PVA films are promising carriers for controlled topical drug delivery applications.

4.
Life Sci ; 257: 118059, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659368

RESUMO

Cancer includes a group of diseases involving unregulated cell growth with the potential to invade or expand to other parts of the body, resulting in an estimate of 9.6 million deaths worldwide in 2018. Manifold studies have been conducted to design more efficacious techniques for cancer therapy due to the inadequacy of conventional treatments including chemotherapy, surgery, and radiation therapy. With the advances in the biomedical applications of nanotechnology-based systems, nanomaterials have gained increasing attention as promising vehicles for targeted cancer therapy and optimizing treatment outcomes. Owing to their outstanding thermal, electrical, optical and chemical properties, carbon nanotubes (CNTs) have been profoundly studied to explore the various perspectives of their application in cancer treatment. The current study aims to review the role of CNTs whether as a carrier or mediator in cancer treatment for enhancing the efficacy as well as the specificity of therapy and reducing adverse side effects. This comprehensive review indicates that CNTs have the capability to be the next generation nanomaterials to actualize noninvasive targeted eradication of tumors. However, further studies are needed to evaluate the consequences of their biomedical application before the transition into clinical trials, since possible adverse effects of CNTs on biological systems have not been clearly understood.


Assuntos
Sistemas de Liberação de Medicamentos , Nanotubos de Carbono , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Humanos , Nanotecnologia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA