Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(3): 1210-1218, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36575304

RESUMO

Studies have shown cortical alterations in individuals with autism spectrum disorders (ASD) as well as in individuals with high polygenic risk for ASD. An important addition to the study of altered cortical anatomy is the investigation of the underlying brain network architecture that may reveal brain-wide mechanisms in ASD and in polygenic risk for ASD. Such an approach has been proven useful in other psychiatric disorders by revealing that brain network architecture shapes (to an extent) the disorder-related cortical alterations. This study uses data from a clinical dataset-560 male subjects (266 individuals with ASD and 294 healthy individuals, CTL, mean age at 17.2 years) from the Autism Brain Imaging Data Exchange database, and data of 391 healthy individuals (207 males, mean age at 12.1 years) from the Pediatric Imaging, Neurocognition and Genetics database. ASD-related cortical alterations (group difference, ASD-CTL, in cortical thickness) and cortical correlates of polygenic risk for ASD were assessed, and then statistically compared with structural connectome-based network measures (such as hubs) using spin permutation tests. Next, we investigated whether polygenic risk for ASD could be predicted by network architecture by building machine-learning based prediction models, and whether the top predictors of the model were identified as disease epicenters of ASD. We observed that ASD-related cortical alterations as well as cortical correlates of polygenic risk for ASD implicated cortical hubs more strongly than non-hub regions. We also observed that age progression of ASD-related cortical alterations and cortical correlates of polygenic risk for ASD implicated cortical hubs more strongly than non-hub regions. Further investigation revealed that structural connectomes predicted polygenic risk for ASD (r = 0.30, p < 0.0001), and two brain regions (the left inferior parietal and left suparmarginal) with top predictive connections were identified as disease epicenters of ASD. Our study highlights a critical role of network architecture in a continuum model of ASD spanning from healthy individuals with genetic risk to individuals with ASD. Our study also highlights the strength of investigating polygenic risk scores in addition to multi-modal neuroimaging measures to better understand the interplay between genetic risk and brain alterations associated with ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Masculino , Criança , Adolescente , Imageamento por Ressonância Magnética/métodos , Encéfalo , Neuroimagem
2.
Hum Brain Mapp ; 43(16): 4886-4900, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35894163

RESUMO

Genome-wide polygenic scores for educational attainment (PGS-EA) and socioeconomic factors, which are correlated with each other, have been consistently associated with academic achievement and general cognitive ability in children and adolescents. Yet, the independent associations of PGS-EA and socioeconomic factors with specific underlying factors at the neural and neurocognitive levels are not well understood. The main goals of this study were to examine the unique contributions of PGS-EA and parental education to cortical structure and neurocognitive skills in children and adolescents, and the associations among PGS-EA, cortical structure, and neurocognitive skills. Participants were typically developing 3- to 21-year-olds (53% male; N = 391). High-resolution, T1-weighted magnetic resonance imaging data were acquired, and cortical thickness (CT) and surface area (SA) were measured. PGS-EA were computed based on the EA3 genome-wide association study of educational attainment. Participants completed executive function, vocabulary, and episodic memory tasks. Higher PGS-EA and parental education were independently and significantly associated with greater total SA and vocabulary. Higher PGS-EA was significantly associated with greater SA in the left medial orbitofrontal gyrus and inferior frontal gyrus, which was associated with higher executive function. Higher parental education was significantly associated with greater SA in the left parahippocampal gyrus after accounting for PGS-EA and total brain volume. These findings suggest that education-linked genetics may influence SA in frontal regions, leading to variability in executive function. Associations of parental education with cortical structure in children and adolescents remained significant after controlling for PGS-EA, a source of genetic confounding.


Assuntos
Sucesso Acadêmico , Criança , Adolescente , Masculino , Humanos , Feminino , Estudo de Associação Genômica Ampla , Herança Multifatorial , Escolaridade , Fatores Socioeconômicos
3.
Neuroimage ; 235: 117974, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33766753

RESUMO

In the last few years, a significant amount of work has aimed to characterize maturational trajectories of cortical development. The role of pericortical microstructure putatively characterized as the gray-white matter contrast (GWC) at the pericortical gray-white matter boundary and its relationship to more traditional morphological measures of cortical morphometry has emerged as a means to examine finer grained neuroanatomical underpinnings of cortical changes. In this work, we characterize the GWC developmental trajectories in a representative sample (n = 394) of children and adolescents (~4 to ~22 years of age), with repeated scans (1-3 scans per subject, total scans n = 819). We tested whether linear, quadratic, or cubic trajectories of contrast development best described changes in GWC. A best-fit model was identified vertex-wise across the whole cortex via the Akaike Information Criterion (AIC). GWC across nearly the whole brain was found to significantly change with age. Cubic trajectories were likeliest for 63% of vertices, quadratic trajectories were likeliest for 20% of vertices, and linear trajectories were likeliest for 16% of vertices. A main effect of sex was observed in some regions, where males had a higher GWC than females. However, no sex by age interactions were found on GWC. In summary, our results suggest a progressive decrease in GWC at the pericortical boundary throughout childhood and adolescence. This work contributes to efforts seeking to characterize typical, healthy brain development and, by extension, can help elucidate aberrant developmental trajectories.


Assuntos
Córtex Cerebral , Substância Cinzenta , Desenvolvimento Humano , Substância Branca , Adolescente , Adulto , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Criança , Pré-Escolar , Feminino , Substância Cinzenta/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/crescimento & desenvolvimento , Desenvolvimento Humano/fisiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Fatores Sexuais , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento , Adulto Jovem
4.
Neuroimage ; 206: 116226, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593792

RESUMO

Accurate prediction of individuals' brain age is critical to establish a baseline for normal brain development. This study proposes to model brain development with a novel non-negative projective dictionary learning (NPDL) approach, which learns a discriminative representation of multi-modal neuroimaging data for predicting brain age. Our approach encodes the variability of subjects in different age groups using separate dictionaries, projecting features into a low-dimensional manifold such that information is preserved only for the corresponding age group. The proposed framework improves upon previous discriminative dictionary learning methods by incorporating orthogonality and non-negativity constraints, which remove representation redundancy and perform implicit feature selection. We study brain development on multi-modal brain imaging data from the PING dataset (N = 841, age = 3-21 years). The proposed analysis uses our NDPL framework to predict the age of subjects based on cortical measures from T1-weighted MRI and connectome from diffusion weighted imaging (DWI). We also investigate the association between age prediction and cognition, and study the influence of gender on prediction accuracy. Experimental results demonstrate the usefulness of NDPL for modeling brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Córtex Cerebral/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Neuroimagem/métodos , Adolescente , Adulto , Fatores Etários , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Criança , Pré-Escolar , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Fatores Sexuais , Adulto Jovem
5.
Hippocampus ; 30(10): 1058-1072, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32485018

RESUMO

Hippocampal circuitry has been posited to be fundamental to positive symptoms in psychosis, but its contributions to other factors important for outcome remains unclear. We hypothesized that longitudinal changes in the hippocampal circuit and concomitant changes of intracortical microstructure are altered in first episode psychosis (FEP) patients and that such changes are associated with negative symptoms and verbal memory. Longitudinal brain scans (2-4 visits over 3-15 months) were acquired for 27 FEP and 29 age- and sex-matched healthy controls. Quantitative T1 maps, sensitive to myelin content, were used to sample the microstructure of the hippocampal subfields and output circuitry (fimbria, alveus, fornix, mammillary bodies), and intracortical regions. Dynamic anatomical covariance in pair-wise regional trajectories were assessed for each subject, and graph theory was used to calculate a participation coefficient metric that quantifies the similarity/divergence between hippocampal and intracortical microstructure. The mean participation coefficient of the hippocampus was significantly reduced in FEP patients compared with controls, reflecting differences in output hippocampal regions. Importantly, lower participation coefficient of the hippocampal circuit was associated with worse negative symptoms, a relationship that was mediated by changes in verbal memory. This study provides evidence for reduced hippocampal centrality in FEP and concomitant changes in intracortical anatomy. Myelin-rich output regions of the hippocampus may be an important biological trigger in early psychosis, with cascading effects on broader cortical networks and resultant clinical profiles.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico por imagem , Adolescente , Adulto , Córtex Cerebral/fisiologia , Feminino , Seguimentos , Hipocampo/fisiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/fisiologia , Transtornos Psicóticos/psicologia , Aprendizagem Verbal/fisiologia
6.
Hum Brain Mapp ; 41(18): 5097-5113, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33058416

RESUMO

Studies of socioeconomic disparities have largely focused on correlating brain measures with either composite measure of socioeconomic status (SES), or its components-family income or parental education, giving little attention to the component of parental occupation. Emerging evidence suggests that parental occupation may be an important and neglected indicator of childhood and adolescent SES compared to absolute measures of material resources or academic attainment because, while related, it may more precisely capture position in social hierarchy and related health outcomes. On the other hand, although cortical thickness and surface area are brain measures with distinct genetic and developmental origins, large-scale neuroimaging studies investigating regional differences in interaction of the composite measure of SES or its components with cortical thickness and surface area are missing. We set out to fill this gap, focusing specifically on the role of parental occupation on cortical thickness and surface area by analyzing magnetic resonance imaging scans from 704 healthy individuals (age = 3-21 years). We observed spatially distributed patterns of (parental occupation × age2 ) interaction with cortical thickness (localized at the left caudal middle frontal, the left inferior parietal and the right superior parietal) and surface area (localized at the left orbitofrontal cortex), indicating independent sources of variability. Further, with decreased cortical thickness, children from families with lower parental occupation exhibited lower self-esteem. Our findings demonstrate distinct influence of parental occupation on cortical thickness and surface area in children and adolescents, potentially reflecting different neurobiological mechanisms by which parental occupation may impact brain development.


Assuntos
Córtex Cerebral/anatomia & histologia , Desenvolvimento Humano/fisiologia , Autoimagem , Fatores Socioeconômicos , Adolescente , Adulto , Fatores Etários , Córtex Cerebral/diagnóstico por imagem , Criança , Pré-Escolar , Escolaridade , Feminino , Humanos , Renda , Imageamento por Ressonância Magnética , Masculino , Ocupações , Pais , Classe Social , Adulto Jovem
7.
Cereb Cortex ; 29(1): 178-188, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228120

RESUMO

Structural covariance has recently emerged as a tool to study brain connectivity in health and disease. The main assumption behind the phenomenon of structural covariance is that changes in brain structure during development occur in a coordinated fashion. However, no study has yet explored the correlation of structural brain changes within individuals across development. Here, we used longitudinal magnetic resonance imaging scans from 141 normally developing children and adolescents (scanned 3 times) to introduce a novel subject-based maturational coupling approach. For each subject, maturational coupling was defined as similarity in the trajectory of cortical thickness (across the time points) between any two cortical regions. Our approach largely captured features seen in population-based structural covariance, and confirmed strong maturational coupling between homologous and near-neighbor cortical regions. Stronger maturational coupling among several homologous regions was observed for females compared to males, possibly indicating greater interhemispheric connectivity in females. Developmental changes in maturational coupling within the default-mode network (DMN) aligned with developmental changes in structural and functional DMN connectivity. Our findings indicate that patterns of maturational coupling within individuals may provide mechanistic explanation for the phenomenon of structural covariance, and allow investigation of individual brain variability with respect to cognition and disease vulnerability.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Desenvolvimento Infantil/fisiologia , Imageamento por Ressonância Magnética/tendências , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Estudos Longitudinais , Masculino , Tamanho do Órgão/fisiologia
8.
Genet Epidemiol ; 42(3): 233-249, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29423954

RESUMO

Predicting a phenotype and understanding which variables improve that prediction are two very challenging and overlapping problems in the analysis of high-dimensional (HD) data such as those arising from genomic and brain imaging studies. It is often believed that the number of truly important predictors is small relative to the total number of variables, making computational approaches to variable selection and dimension reduction extremely important. To reduce dimensionality, commonly used two-step methods first cluster the data in some way, and build models using cluster summaries to predict the phenotype. It is known that important exposure variables can alter correlation patterns between clusters of HD variables, that is, alter network properties of the variables. However, it is not well understood whether such altered clustering is informative in prediction. Here, assuming there is a binary exposure with such network-altering effects, we explore whether the use of exposure-dependent clustering relationships in dimension reduction can improve predictive modeling in a two-step framework. Hence, we propose a modeling framework called ECLUST to test this hypothesis, and evaluate its performance through extensive simulations. With ECLUST, we found improved prediction and variable selection performance compared to methods that do not consider the environment in the clustering step, or to methods that use the original data as features. We further illustrate this modeling framework through the analysis of three data sets from very different fields, each with HD data, a binary exposure, and a phenotype of interest. Our method is available in the eclust CRAN package.


Assuntos
Doença/genética , Modelos Genéticos , Adolescente , Algoritmos , Criança , Pré-Escolar , Análise por Conglomerados , Simulação por Computador , Bases de Dados como Assunto , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Imageamento por Ressonância Magnética
9.
Br J Psychiatry ; 214(5): 288-296, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30791964

RESUMO

BACKGROUND: Previous studies in schizophrenia revealed abnormalities in the cortico-cerebellar-thalamo-cortical circuit (CCTCC) pathway, suggesting the necessity for defining thalamic subdivisions in understanding alterations of brain connectivity.AimsTo parcellate the thalamus into several subdivisions using a data-driven method, and to evaluate the role of each subdivision in the alterations of CCTCC functional connectivity in patients with schizophrenia. METHOD: There were 54 patients with schizophrenia and 42 healthy controls included in this study. First, the thalamic structural and functional connections computed, based on diffusion magnetic resonance imaging (MRI, white matter tractography) and resting-state functional MRI, were clustered to parcellate thalamus. Next, functional connectivity of each thalamus subdivision was investigated, and the alterations in thalamic functional connectivity for patients with schizophrenia were inspected. RESULTS: Based on the data-driven parcellation method, six thalamic subdivisions were defined. Loss of connectivity was observed between several thalamic subdivisions (superior-anterior, ventromedial and dorsolateral part of the thalamus) and the sensorimotor system, anterior cingulate cortex and cerebellum in patients with schizophrenia. A gradual pattern of dysconnectivity was observed across the thalamic subdivisions. Additionally, the altered connectivity negatively correlated with symptom scores and duration of illness in individuals with schizophrenia. CONCLUSIONS: The findings of the study revealed a wide range of thalamic functional dysconnectivity in the CCTCC pathway, increasing our understanding of the relationship between the CCTCC pathway and symptoms associated with schizophrenia, and further indicating a potential alteration pattern in the thalamic nuclei in people with schizophrenia.Declaration of interestNone.


Assuntos
Cerebelo/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto , Antipsicóticos/uso terapêutico , Clorpromazina/uso terapêutico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico
10.
Cereb Cortex ; 27(3): 1721-1731, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334080

RESUMO

Neuroimaging studies in autism spectrum disorders (ASDs) have provided inconsistent evidence of cortical abnormality. This is probably due to the small sample sizes used in most studies, and important differences in sample characteristics, particularly age, as well as to the heterogeneity of the disorder. To address these issues, we assessed abnormalities in ASD within the Autism Brain Imaging Data Exchange data set, which comprises data from approximately 1100 individuals (~6-55 years). A subset of these data that met stringent quality control and inclusion criteria (560 male subjects; 266 ASD; age = 6-35 years) were used to compute age-specific differences in cortical thickness in ASD and the relationship of any such differences to symptom severity of ASD. Our results show widespread increased cortical thickness in ASD, primarily left lateralized, from 6 years onwards, with differences diminishing during adulthood. The severity of symptoms related to social affect and communication correlated with these cortical abnormalities. These results are consistent with the conjecture that developmental patterns of cortical thickness abnormalities reflect delayed cortical maturation and highlight the dynamic nature of morphological abnormalities in ASD.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Adolescente , Adulto , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Índice de Gravidade de Doença , Adulto Jovem
11.
Neuroimage ; 144(Pt A): 128-141, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664827

RESUMO

Machine learning approaches have been widely used for the identification of neuropathology from neuroimaging data. However, these approaches require large samples and suffer from the challenges associated with multi-site, multi-protocol data. We propose a novel approach to address these challenges, and demonstrate its usefulness with the Autism Brain Imaging Data Exchange (ABIDE) database. We predict symptom severity based on cortical thickness measurements from 156 individuals with autism spectrum disorder (ASD) from four different sites. The proposed approach consists of two main stages: a domain adaptation stage using partial least squares regression to maximize the consistency of imaging data across sites; and a learning stage combining support vector regression for regional prediction of severity with elastic-net penalized linear regression for integrating regional predictions into a whole-brain severity prediction. The proposed method performed markedly better than simpler alternatives, better with multi-site than single-site data, and resulted in a considerably higher cross-validated correlation score than has previously been reported in the literature for multi-site data. This demonstration of the utility of the proposed approach for detecting structural brain abnormalities in ASD from the multi-site, multi-protocol ABIDE dataset indicates the potential of designing machine learning methods to meet the challenges of agglomerative data.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Córtex Cerebral/diagnóstico por imagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Índice de Gravidade de Doença , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Criança , Bases de Dados Factuais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
12.
Neuroimage ; 144(Pt A): 227-240, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27554529

RESUMO

Verbal and non-verbal intelligence in children is highly correlated, and thus, it has been difficult to differentiate their neural substrates. Nevertheless, recent studies have shown that verbal and non-verbal intelligence can be dissociated and focal cortical regions corresponding to each have been demonstrated. However, the pattern of structural covariance corresponding to verbal and non-verbal intelligence remains unexplored. In this study, we used 586 longitudinal anatomical MRI scans of subjects aged 6-18 years, who had concurrent intelligence quotient (IQ) testing on the Wechsler Abbreviated Scale of Intelligence. Structural covariance networks (SCNs) were constructed using interregional correlations in cortical thickness for low-IQ (Performance IQ=100±8, Verbal IQ=100±7) and high-IQ (PIQ=121±8, VIQ=120±9) groups. From low- to high-VIQ group, we observed constrained patterns of anatomical coupling among cortical regions, complemented by observations of higher global efficiency and modularity, and lower local efficiency in high-VIQ group, suggesting a shift towards a more optimal topological organization. Analysis of nodal topological properties (regional efficiency and participation coefficient) revealed greater involvement of left-hemispheric language related regions including inferior frontal and superior temporal gyri for high-VIQ group. From low- to high-PIQ group, we did not observe significant differences in anatomical coupling patterns, global and nodal topological properties. Our findings indicate that people with higher verbal intelligence have structural brain differences from people with lower verbal intelligence - not only in localized cortical regions, but also in the patterns of anatomical coupling among widely distributed cortical regions, possibly resulting to a system-level reorganization that might lead to a more efficient organization in high-VIQ group.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Córtex Cerebral/anatomia & histologia , Desenvolvimento Infantil/fisiologia , Inteligência/fisiologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Córtex Cerebral/diagnóstico por imagem , Criança , Feminino , Humanos , Masculino
13.
Neuroimage ; 134: 192-203, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27054487

RESUMO

The developing human brain undergoes an astonishing sequence of events that continuously shape the structural and functional brain connectivity. Distinct regional variations in the timelines of maturational events (synaptogenesis and synaptic pruning) occurring at the synaptic level are reflected in brain measures at macroscopic resolution (cortical thickness and gray matter density). Interestingly, the observed brain changes coincide with cognitive milestones suggesting that the changing scaffold of brain circuits may subserve cognitive development. Recent advances in connectivity analysis propelled by graph theory have allowed, on one hand, the investigation of maturational changes in global organization of structural and functional brain networks; and on the other hand, the exploration of specific networks within the context of global brain networks. An emerging picture from several connectivity studies is a system-level rewiring that constantly refines the connectivity of the developing brain.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Cognição/fisiologia , Conectoma/métodos , Adolescente , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Neurológicos , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia
14.
Neuroimage ; 125: 311-331, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26515902

RESUMO

In systems neuroscience, the term "connectivity" has been defined in numerous ways, according to the particular empirical modality from which it is derived. Due to large differences in the phenomena measured by these modalities, the assumptions necessary to make inferences about axonal connections, and the limitations accompanying each, brain connectivity remains an elusive concept. Despite this, only a handful of studies have directly compared connectivity as inferred from multiple modalities, and there remains much ambiguity over what the term is actually referring to as a biological construct. Here, we perform a direct comparison based on the high-resolution and high-contrast Enhanced Nathan Klein Institute (NKI) Rockland Sample neuroimaging data set, and the CoCoMac database of tract tracing studies. We compare four types of commonly-used primate connectivity analyses: tract tracing experiments, compiled in CoCoMac; group-wise correlation of cortical thickness; tractographic networks computed from diffusion-weighted MRI (DWI); and correlational networks obtained from resting-state BOLD (fMRI). We find generally poor correspondence between all four modalities, in terms of correlated edge weights, binarized comparisons of thresholded networks, and clustering patterns. fMRI and DWI had the best agreement, followed by DWI and CoCoMac, while other comparisons showed striking divergence. Networks had the best correspondence for local ipsilateral and homotopic contralateral connections, and the worst correspondence for long-range and heterotopic contralateral connections. k-Means clustering highlighted the lowest cross-modal and cross-species consensus in lateral and medial temporal lobes, anterior cingulate, and the temporoparietal junction. Comparing the NKI results to those of the lower resolution/contrast International Consortium for Brain Imaging (ICBM) dataset, we find that the relative pattern of intermodal relationships is preserved, but the correspondence between human imaging connectomes is substantially better for NKI. These findings caution against using "connectivity" as an umbrella term for results derived from single empirical modalities, and suggest that any interpretation of these results should account for (and ideally help explain) the lack of multimodal correspondence.


Assuntos
Encéfalo/anatomia & histologia , Conectoma/métodos , Vias Neurais/anatomia & histologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/fisiologia , Criança , Análise por Conglomerados , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Primatas , Especificidade da Espécie , Adulto Jovem
15.
Neuroimage ; 111: 350-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25731999

RESUMO

Several studies using magnetic resonance imaging (MRI) scans have shown developmental trajectories of cortical thickness. Cognitive milestones happen concurrently with these structural changes, and a delay in such changes has been implicated in developmental disorders such as attention-deficit/hyperactivity disorder (ADHD). Accurate estimation of individuals' brain maturity, therefore, is critical in establishing a baseline for normal brain development against which neurodevelopmental disorders can be assessed. In this study, cortical thickness derived from structural magnetic resonance imaging (MRI) scans of a large longitudinal dataset of normally growing children and adolescents (n=308), were used to build a highly accurate predictive model for estimating chronological age (cross-validated correlation up to R=0.84). Unlike previous studies which used kernelized approach in building prediction models, we used an elastic net penalized linear regression model capable of producing a spatially sparse, yet accurate predictive model of chronological age. Upon investigating different scales of cortical parcellation from 78 to 10,240 brain parcels, we observed that the accuracy in estimated age improved with increased spatial scale of brain parcellation, with the best estimations obtained for spatial resolutions consisting of 2560 and 10,240 brain parcels. The top predictors of brain maturity were found in highly localized sensorimotor and association areas. The results of our study demonstrate that cortical thickness can be used to estimate individuals' brain maturity with high accuracy, and the estimated ages relate to functional and behavioural measures, underscoring the relevance and scope of the study in the understanding of biological maturity.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Adolescente , Fatores Etários , Criança , Humanos , Estudos Longitudinais
16.
Hum Brain Mapp ; 36(11): 4469-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26264575

RESUMO

Functional neuroimaging studies have revealed abnormal brain dynamics of male sexual arousal (SA) in psychogenic erectile dysfunction (pED). However, the neuroanatomical correlates of pED are still unclear. In this work, we obtained cortical thickness (CTh) measurements from structural magnetic resonance images of 40 pED patients and 39 healthy control subjects. Abnormalities in CTh related to pED were explored using a scale space search based brain morphometric analysis. Organizations of brain structural covariance networks were analyzed as well. Compared with healthy men, pED patients showed significantly decreased CTh in widespread cortical regions, most of which were previously reported to show abnormal dynamics of male SA in pED, such as the medial prefrontal, orbitofrontal, cingulate, inferotemporal, and insular cortices. CTh reductions in these areas were found to be significantly correlated with male sexual functioning degradation. Moreover, pED patients showed decreased interregional CTh correlations from the right lateral orbitofrontal cortex to the right supramarginal gyrus and the left angular cortex, implying disassociations between the cognitive, motivational, and inhibitory networks of male SA in pED. This work provides structural insights on the complex phenomenon of psychogenic sexual dysfunction in men, and suggests a specific vulnerability factor, possibly as an extra "organic" factor, that may play an important role in pED.


Assuntos
Córtex Cerebral/patologia , Disfunção Erétil/patologia , Rede Nervosa/patologia , Adulto , Disfunção Erétil/psicologia , Humanos , Imageamento por Ressonância Magnética , Masculino
17.
Cereb Cortex ; 23(9): 2072-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22784607

RESUMO

Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Rede Nervosa/crescimento & desenvolvimento , Adolescente , Desenvolvimento do Adolescente/fisiologia , Mapeamento Encefálico , Córtex Cerebral/anatomia & histologia , Criança , Desenvolvimento Infantil/fisiologia , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/anatomia & histologia
18.
J Affect Disord ; 344: 619-627, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858734

RESUMO

BACKGROUND: Depression has frequently been associated with smaller hippocampal volume. The hippocampus varies in function along its anterior-posterior axis, with the anterior hippocampus more strongly associated with stress and emotion processing. The goals of this study were to examine the associations among parental history of anxiety/depression, polygenic risk scores for depression (PGS-DEP), and anterior and posterior hippocampal volumes in children and adolescents. To examine specificity to PGS-DEP, we examined associations of educational attainment polygenic scores (PGS-EA) with anterior and posterior hippocampal volume. METHODS: Participants were 350 3- to 21-year-olds (46 % female). PGS-DEP and PGS-EA were computed based on recent, large-scale genome-wide association studies. High-resolution, T1-weighted magnetic resonance imaging (MRI) data were acquired, and a semi-automated approach was used to segment the hippocampus into anterior and posterior subregions. RESULTS: Children and adolescents with higher polygenic risk for depression were more likely to have a parent with a history of anxiety/depression. Higher polygenic risk for depression was significantly associated with smaller anterior but not posterior hippocampal volume. PGS-EA was not associated with anterior or posterior hippocampal volumes. LIMITATIONS: Participants in these analyses were all of European ancestry. CONCLUSIONS: Polygenic risk for depression may lead to smaller anterior but not posterior hippocampal volume in children and adolescents, and there may be specificity of these effects to PGS-DEP rather than PGS-EA. These findings may inform the earlier identification of those in need of support and the design of more effective, personalized treatment strategies. DECLARATIONS OF INTEREST: none. DECLARATIONS OF INTEREST: None.


Assuntos
Depressão , Estudo de Associação Genômica Ampla , Humanos , Criança , Feminino , Adolescente , Masculino , Depressão/diagnóstico por imagem , Depressão/genética , Imageamento por Ressonância Magnética , Hipocampo/diagnóstico por imagem , Escolaridade
19.
Biol Psychiatry Glob Open Sci ; 3(4): 1083-1093, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881579

RESUMO

Background: Schizophrenia is widely recognized as a neurodevelopmental disorder. Abnormal cortical development in otherwise typically developing children and adolescents may be revealed using polygenic risk scores for schizophrenia (PRS-SCZ). Methods: We assessed PRS-SCZ and cortical morphometry in typically developing children and adolescents (3-21 years, 46.8% female) using whole-genome genotyping and T1-weighted magnetic resonance imaging (n = 390) from the PING (Pediatric Imaging, Neurocognition, and Genetics) cohort. We contextualized the findings using 1) age-matched transcriptomics, 2) histologically defined cytoarchitectural types and functionally defined networks, and 3) case-control differences of schizophrenia and other major psychiatric disorders derived from meta-analytic data of 6 ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) working groups, including a total of 12,876 patients and 15,670 control participants. Results: Higher PRS-SCZ was associated with greater cortical thickness, which was most prominent in areas with heightened gene expression of dendrites and synapses. PRS-SCZ-related increases in vertexwise cortical thickness were mainly distributed in association cortical areas, particularly the ventral attention network, while relatively sparing koniocortical type cortex (i.e., primary sensory areas). The large-scale pattern of cortical thickness increases related to PRS-SCZ mirrored the pattern of cortical thinning in schizophrenia and mood-related psychiatric disorders derived from the ENIGMA consortium. Age group models illustrate a possible trajectory from PRS-SCZ-associated cortical thickness increases in early childhood toward thinning in late adolescence, with the latter resembling the adult brain phenotype of schizophrenia. Conclusions: Collectively, combining imaging genetics with multiscale mapping, our work provides novel insight into how genetic risk for schizophrenia affects the cortex early in life.

20.
Brain Commun ; 2(2): fcaa092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954337

RESUMO

Autism spectrum disorder is a highly prevalent and highly heritable neurodevelopmental condition, but studies have mostly taken traditional categorical diagnosis approach (yes/no for autism spectrum disorder). In contrast, an emerging notion suggests a continuum model of autism spectrum disorder with a normal distribution of autistic tendencies in the general population, where a full diagnosis is at the severe tail of the distribution. We set out to investigate such a viewpoint by investigating the interaction of polygenic risk scores for autism spectrum disorder and Age2 on neuroimaging measures (cortical thickness and white matter connectivity) in a general population (n = 391, with age ranging from 3 to 21 years from the Pediatric Imaging, Neurocognition and Genetics study). We observed that children with higher polygenic risk for autism spectrum disorder exhibited greater cortical thickness for a large age span starting from 3 years up to ∼14 years in several cortical regions localized in bilateral precentral gyri and the left hemispheric postcentral gyrus and precuneus. In an independent case-control dataset from the Autism Brain Imaging Data Exchange (n = 560), we observed a similar pattern: children with autism spectrum disorder exhibited greater cortical thickness starting from 6 years onwards till ∼14 years in wide-spread cortical regions including (the ones identified using the general population). We also observed statistically significant regional overlap between the two maps, suggesting that some of the cortical abnormalities associated with autism spectrum disorder overlapped with brain changes associated with genetic vulnerability for autism spectrum disorder in healthy individuals. Lastly, we observed that white matter connectivity between the frontal and parietal regions showed significant association with polygenic risk for autism spectrum disorder, indicating that not only the brain structure, but the white matter connectivity might also show a predisposition for the risk of autism spectrum disorder. Our findings showed that the fronto-parietal thickness and connectivity are dimensionally related to genetic risk for autism spectrum disorder in general population and are also part of the cortical abnormalities associated with autism spectrum disorder. This highlights the necessity of considering continuum models in studying the aetiology of autism spectrum disorder using polygenic risk scores and multimodal neuroimaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA