Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Funct Integr Genomics ; 20(2): 191-200, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31444657

RESUMO

Exposure to high altitude above 3000 m leads to two outcomes-acclimation or high-altitude maladies. To reach a particular outcome, the plasma proteome is modified differentially, either in context of an acclimation response or mal-acclimation response leading to disease. This ensures that hypoxia-responsive plasma protein trends reflect acclimation in acclimated individuals when compared with their levels prior to acclimation. Such protein trends could be used to assess acclimation in an individual and any significant deviation from this trend may indicate non-acclimation, thereby preventing high-altitude illnesses before they manifest. In this study, we investigate and statistically evaluate the trendlines of various hypoxia-responsive plasma protein levels, reported significantly perturbed in our previous studies, in individuals (male; n = 20) exposed to 3520 m at high-altitude day 1 (HAD1), HAD4, and HAD7L and to 4420 m at HAD7H, HAD30, and HAD120. We observe that thioredoxin (Trx), glutathione peroxidase 3 (GPx-3), and apolipoprotein AI (Apo-AI) are statistically robust markers to assess acclimation across the exposure duration while sulfotransferase 1A1 (ST1A1) is a capable negative control whose levels increase only in cases of HAPE. We also observe exposure day-specific and resident altitude-specific proteins capable of accurately assessing acclimation when compared with baseline levels or the lower altitude zone.


Assuntos
Aclimatação , Altitude , Proteínas Sanguíneas/análise , Hipóxia/sangue , Adulto , Apolipoproteína A-I/sangue , Arilsulfotransferase/sangue , Biomarcadores/sangue , Ensaio de Imunoadsorção Enzimática , Glutationa Peroxidase/sangue , Humanos , Masculino , Militares , Curva ROC , Tiorredoxinas/sangue , Fatores de Tempo , Adulto Jovem
2.
BMC Public Health ; 20(1): 306, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164654

RESUMO

BACKGROUND: Our earlier Google Trend (GT) Analytics study reported that the worldwide human population severely subject to four seasonal (sensitive) comorbid lifestyle diseases (SCLD) such as asthma, obesity, hypertension and fibrosis. The human population subject to seasonal variability in these four diseases activity referred as "severe seasonal sensitive population". In India, the estimated burden of these four seasonal diseases is more than 350 million as on the year 2018. It is a growing crisis for India with a projected disease burden of 500 million in the year 2025. This study was aimed to decipher the genuine SCLD seasonal trends in the entire Indian population using GT and validate these trends in Indian climatic zones. METHODS: GT is used to study the temporal trends in web search using weekly Relative Search Volume (RSV) for the period 2004 to 2017. The relative search volume (RSV) of the four-severe seasonal comorbid diseases namely Asthma, Hypertension, Obesity and Fibrosis were collected with and without obesity as the reference. The RSV were collected using the GT selection options as (i) Whole India (ii) Jammu and Kashmir (Cold zone) (iii) Rajasthan (Hot and Dry zone) (iii) West Bengal (Hot and Humid zone) and (iv) Uttar Pradesh state (Composite zone). The time series analysis was carried out to find seasonal patterns, comorbidity, trends and periodicity in the entire India and four of its states (zones). RESULTS: Our analysis of entire India (2004-2017) revealed high significant seasonal patterns and comorbidity in all the four diseases of SCLD. The positive tau values indicated strong positive seasonal trends in the SCLD throughout the period (Table). The auto correlation analysis revealed that these diseases were subjected to 3, 4 and 6 months period seasonal variations. Similar seasonal patterns and trends were also observed in all the four Indian temperature zones. Overall study indicated that SCLD seasonal search patterns and trends are highly conserved in India even in drastic Indian climatic zones. CONCLUSIONS: The clinical outcome arise out of these observations could be of immense significance in handling the major chronic life style diseases asthma, hypertension, obesity and fibrosis. The possible strong comorbid relationship among asthma, hypertension, obesity and fibrosis may be useful to segregate Indian seasonal sensitive population. In disease activity-based chronotherapy, the search interest of segment of the population with access to Internet may be used as an indicator for public health sectors in the early detection of SCLD from a specific country or a region. As this disease population could be highly subject to the adverse effect of seasons in addition to life style and other environmental factors. Our study necessitates that these Indian populations need special attention from the Indian health care sectors.


Assuntos
Clima , Internet , Ferramenta de Busca/tendências , Estações do Ano , Populações Vulneráveis , Asma/epidemiologia , Doença Crônica , Comorbidade , Fibrose/epidemiologia , Humanos , Hipertensão/epidemiologia , Índia/epidemiologia , Estilo de Vida , Obesidade/epidemiologia
3.
Sci Rep ; 13(1): 9307, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291174

RESUMO

Millions of people worldwide visit, live or work in the hypoxic environment encountered at high altitudes and it is important to understand the biomolecular responses to this stress. This would help design mitigation strategies for high altitude illnesses. In spite of a number of studies spanning over 100 years, still the complex mechanisms controlling acclimatization to hypoxia remain largely unknown. To identify potential diagnostic, therapeutic and predictive markers for HA stress, it is important to comprehensively compare and analyse these studies. Towards this goal, HighAltitudeOmicsDB is a unique resource that provides a comprehensive, curated, user-friendly and detailed compilation of various genes/proteins which have been experimentally validated to be associated with various HA conditions, their protein-protein interactions (PPIs) and gene ontology (GO) semantic similarities. For each database entry, HighAltitudeOmicsDB additionally stores the level of regulation (up/down-regulation), fold change, study control group, duration and altitude of exposure, tissue of expression, source organism, level of hypoxia, method of experimental validation, place/country of study, ethnicity, geographical location etc. The database also collates information on disease and drug association, tissue-specific expression level, GO and KEGG pathway associations. The web resource is a unique server platform that offers interactive PPI networks and GO semantic similarity matrices among the interactors.These unique features help to offer mechanistic insights into the disease pathology. Hence, HighAltitudeOmicsDBis a unique platform for researchers working in this area to explore, fetch, compare and analyse HA-associated genes/proteins, their PPI networks, and GO semantic similarities. The database is available at http://www.altitudeomicsdb.in .


Assuntos
Doença da Altitude , Altitude , Humanos , Semântica , Proteínas , Hipóxia/genética , Doença da Altitude/genética
4.
Heliyon ; 8(5): e09387, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35578630

RESUMO

The alarming pandemic situation of novel Severe Acute Respiratory Syndrome Coronavirus 2 (nSARS-CoV-2) infection, high drug development cost and slow process of drug discovery have made repositioning of existing drugs for therapeutics a popular alternative. It involves the repurposing of existing safe compounds which results in low overall development costs and shorter development timeline. In the present study, a computational network-biology approach has been used for comparing three candidate drugs i.e. quercetin, N-acetyl cysteine (NAC), and 2-deoxy-glucose (2-DG) to be effectively repurposed against COVID-19. For this, the associations between these drugs and genes of Severe Acute Respiratory Syndrome (SARS) and the Middle East Respiratory Syndrome (MERS) diseases were retrieved and a directed drug-gene-gene-disease interaction network was constructed. Further, to quantify the associations between a target gene and a disease gene, the shortest paths from the target gene to the disease genes were identified. A vector DV was calculated to represent the extent to which a disease gene was influenced by these drugs. Quercetin was quantified as the best among the three drugs, suited for repurposing with DV of -70.19, followed by NAC with DV of -39.99 and 2-DG with DV of -13.71. The drugs were also assessed for their safety and efficacy balance (in terms of therapeutic index) using network properties. It was found that quercetin was a forerunner than other two drugs.

5.
Life Sci ; 281: 119718, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34147483

RESUMO

AIMS: Hypoxia, a pathophysiological condition, is profound in several cardiopulmonary diseases (CPD). Every individual's lethality to a hypoxia state differs in terms of hypoxia exposure time, dosage units and dependent on the individual's genetic makeup. Most of the proposed markers for CPD were generally aim to distinguish disease samples from normal samples. Although, as per the 2018 GOLD guidelines, clinically useful biomarkers for several cardio pulmonary disease patients in stable condition have yet to be identified. We attempt to address these key issues through the identification of Dynamic Network Biomarkers (DNB) to detect hypoxia induced early warning signals of CPD before the catastrophic deterioration. MATERIALS AND METHODS: The human microvascular endothelial tissues microarray datasets (GSE11341) of lung and cardiac expose to hypoxia (1% O2) for 3, 24 and 48 h were retrieved from the public repository. The time dependent differentially expressed genes were subjected to tissue specificity and promoter analysis to filtrate the noise levels in the networks and to dissect the tissue specific hypoxia induced genes. These filtered out genes were used to construct the dynamic segmentation networks. The hypoxia induced dynamic differentially expressed genes were validated in the lung and heart tissues of male rats. These rats were exposed to hypobaric hypoxia (simulated altitude of 25,000 or PO2 - 282 mm of Hg) progressively for 3, 24 and 48 h. KEY FINDINGS: To identify the temporal key genes regulated in hypoxia, we ranked the dominant genes based on their consolidated topological features from tissue specific networks, time dependent networks and dynamic networks. Overall topological ranking described VEGFA as a single node dynamic hub and strongly communicated with tissue specific genes to carry forward their tissue specific information. We named this type of VEGFAcentric dynamic networks as "V-DNBs". As a proof of principle, our methodology helped us to identify the V-DNBs specific for lung and cardiac tissues namely V-DNBL and V-DNBC respectively. SIGNIFICANCE: Our experimental studies identified VEGFA, SLC2A3, ADM and ENO2 as the minimum and sufficient candidates of V-DNBL. The dynamic expression patterns could be readily exploited to capture the pre disease state of hypoxia induced pulmonary vascular remodelling. Whereas in V-DNBC the minimum and sufficient candidates are VEGFA, SCL2A3, ADM, NDRG1, ENO2 and BHLHE40. The time dependent single node expansion indicates V-DNBC could also be the pre disease state pathological hallmark for hypoxia-associated cardiovascular remodelling. The network cross-talk and expression pattern between V-DNBL and V-DNBC are completely distinct. On the other hand, the great clinical advantage of V-DNBs for pre disease predictions, a set of samples during the healthy condition should suffice. Future clinical studies might further shed light on the predictive power of V-DNBs as prognostic and diagnostic biomarkers for CPD.


Assuntos
Cardiopatias/metabolismo , Hipóxia/metabolismo , Pneumopatias/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Biomarcadores/metabolismo , Deterioração Clínica , Regulação da Expressão Gênica , Cardiopatias/etiologia , Cardiopatias/patologia , Humanos , Hipóxia/complicações , Hipóxia/genética , Pneumopatias/etiologia , Pneumopatias/patologia , Masculino , Ratos , Ratos Sprague-Dawley
6.
BMC Bioinformatics ; 11: 57, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-20105319

RESUMO

BACKGROUND: Enzymes belonging to acyl:CoA synthetase (ACS) superfamily activate wide variety of substrates and play major role in increasing the structural and functional diversity of various secondary metabolites in microbes and plants. However, due to the large sequence divergence within the superfamily, it is difficult to predict their substrate preference by annotation transfer from the closest homolog. Therefore, a large number of ACS sequences present in public databases lack any functional annotation at the level of substrate specificity. Recently, several examples have been reported where the enzymes showing high sequence similarity to luciferases or coumarate:CoA ligases have been surprisingly found to activate fatty acyl substrates in experimental studies. In this work, we have investigated the relationship between the substrate specificity of ACS and their sequence/structural features, and developed a novel computational protocol for in silico assignment of substrate preference. RESULTS: We have used a knowledge-based approach which involves compilation of substrate specificity information for various experimentally characterized ACS and derivation of profile HMMs for each subfamily. These HMM profiles can accurately differentiate probable cognate substrates from non-cognate possibilities with high specificity (Sp) and sensitivity (Sn) (Sn = 0.91-1.0, Sp = 0.96-1.0) values. Using homologous crystal structures, we identified a limited number of contact residues crucial for substrate recognition i.e. specificity determining residues (SDRs). Patterns of SDRs from different subfamilies have been used to derive predictive rules for correlating them to substrate preference. The power of the SDR approach has been demonstrated by correct prediction of substrates for enzymes which show apparently anomalous substrate preference. Furthermore, molecular modeling of the substrates in the active site has been carried out to understand the structural basis of substrate selection. A web based prediction tool http://www.nii.res.in/pred_acs_substr.html has been developed for automated functional classification of ACS enzymes. CONCLUSIONS: We have developed a novel computational protocol for predicting substrate preference for ACS superfamily of enzymes using a limited number of SDRs. Using this approach substrate preference can be assigned to a large number of ACS enzymes present in various genomes. It can potentially help in rational design of novel proteins with altered substrate specificities.


Assuntos
Acetato-CoA Ligase/química , Acetato-CoA Ligase/genética , Algoritmos , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Sci Rep ; 10(1): 8593, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451429

RESUMO

Muscular atrophy or muscle loss is a multifactorial clinical condition during many critical illnesses like cancer, cardiovascular diseases, diabetes, pulmonary diseases etc. leading to fatigue and weakness and contributes towards a decreased quality of life. The proportion of older adults (>65 y) in the overall population is also growing and aging is another important factor causing muscle loss. Some muscle miRNAs (myomiRs) and their target genes have even been proposed as potential diagnostic, therapeutic and predictive markers for muscular atrophy. MyomirDB (http://www.myomirdb.in/) is a unique resource that provides a comprehensive, curated, user- friendly and detailed compilation of various miRNA bio-molecular interactions; miRNA-Transcription Factor-Target Gene co-regulatory networks and ~8000 tripartite regulons associated with 247 myomiRs which have been experimentally validated to be associated with various muscular atrophy conditions. For each database entry, MyomirDB compiles source organism, muscle atrophic condition, experiment duration, its level of expression, fold change, tissue of expression, experimental validation, disease and drug association, tissue-specific expression level, Gene Ontology and KEGG pathway associations. The web resource is a unique server platform which uses in-house scripts to construct miRNA-Transcription Factor-Target Gene co-regulatory networks and extract tri-partite regulons also called Feed Forward Loops. These unique features helps to offer mechanistic insights in disease pathology. Hence, MyomirDB is a unique platform for researchers working in this area to explore, fetch, compare and analyse atrophy associated miRNAs, their co-regulatory networks and FFL regulons.


Assuntos
Redes Reguladoras de Genes/genética , MicroRNAs/metabolismo , Regulon/genética , Interface Usuário-Computador , Bases de Dados Genéticas , Humanos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Fatores de Transcrição/metabolismo
8.
Database (Oxford) ; 20202020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33259604

RESUMO

Around 140 million people live in high-altitude (HA) conditions! and even a larger number visit such places for tourism, adventure-seeking or sports training. Rapid ascent to HA can cause severe damage to the body organs and may lead to many fatal disorders. During induction to HA, human body undergoes various physiological, biochemical, hematological and molecular changes to adapt to the extreme environmental conditions. Several literature references hint that gene-expression-regulation and regulatory molecules like miRNAs and transcription factors (TFs) control adaptive responses during HA stress. These biomolecules are known to interact in a complex combinatorial manner to fine-tune the gene expression and help in controlling the molecular responses during this stress and ultimately help in acclimatization. High-Altitude Human miRNA Database (HAHmiR.DB) is a unique, comprehensive and curated collection of miRNAs that have been experimentally validated to be associated with HA stress, their level of expression in different altitudes, fold change, experiment duration, biomarker association, disease and drug association, tissue-specific expression level, Gene Ontology (GO) and Kyoto Encyclopaedia of Gene and Genomes (KEGG) pathway associations. As a server platform, it also uniquely constructs and analyses interactive miRNA-TF-gene coregulatory networks and extracts regulatory circuits/feed-forward loops (FFLs). These regulatory circuits help to offer mechanistic insights into complex regulatory mechanisms during HA stress. The server can also build these regulatory networks between two and more miRNAs of the database and also identify the regulatory circuits from this network. Hence, HAHmiR.DB is the first-of-its-kind database in HA research, which is a reliable platform to explore, compare, analyse and retrieve miRNAs associated with HA stress, their coregulatory networks and FFL regulatory-circuits. HAHmiR.DB is freely accessible at http://www.hahmirdb.in.


Assuntos
MicroRNAs , Altitude , Redes Reguladoras de Genes , Genoma , Humanos , MicroRNAs/genética , Fatores de Transcrição/genética
9.
Microrna ; 8(3): 223-236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30806334

RESUMO

BACKGROUND: Hypoxia is a pathophysiological condition which arises due to low oxygen concentration in conditions like cardiovascular diseases, inflammation, ascent to higher altitude, malignancies, deep sea diving, prenatal birth, etc. A number of microRNAs (miRNAs), Transcription Factors (TFs) and genes have been studied separately for their role in hypoxic adaptation and controlling cell-cycle progression and apoptosis during this stress. OBJECTIVE: We hypothesize that miRNAs and TFs may act in conjunction to regulate a multitude of genes and play a crucial and combinatorial role during hypoxia-stress-responses and associated cellcycle control mechanisms. METHOD: We collected a comprehensive and non-redundant list of human hypoxia-responsive miRNAs (also known as hypoxiamiRs). Their experimentally validated gene-targets were retrieved from various databases and a comprehensive hypoxiamiR-gene regulatory network was built. RESULTS: Functional characterization and pathway enrichment of genes identified phospho-proteins as enriched nodes. The phospho-proteins which were localized both in the nucleus and cytoplasm and could potentially play important role as signaling molecules were selected; and further pathway enrichment revealed that most of them were involved in NFkB signaling. Topological analysis identified several critical hypoxiamiRs and network perturbations confirmed their importance in the network. Feed Forward Loops (FFLs) were identified in the subnetwork of enriched genes, miRNAs and TFs. Statistically significant FFLs consisted of four miRNAs (hsa-miR-182-5p, hsa- miR-146b-5p, hsa-miR-96, hsa-miR-20a) and three TFs (SMAD4, FOXO1, HIF1A) both regulating two genes (NFkB1A and CDKN1A). CONCLUSION: Detailed BioCarta pathway analysis identified that these miRNAs and TFs together play a critical and combinatorial role in regulating cell-cycle under hypoxia, by controlling mechanisms that activate cell-cycle checkpoint protein, CDKN1A. These modules work synergistically to regulate cell-proliferation, cell-growth, cell-differentiation and apoptosis during hypoxia. A detailed mechanistic molecular model of how these co-regulatory FFLs may regulate the cell-cycle transitions during hypoxic stress conditions is also put forth. These biomolecules may play a crucial and deterministic role in deciding the fate of the cell under hypoxic-stress.


Assuntos
Ciclo Celular/genética , Hipóxia Celular/genética , Redes Reguladoras de Genes/genética , MicroRNAs/genética , Humanos , Fatores de Transcrição/metabolismo
10.
Life Sci ; 203: 171-176, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29698652

RESUMO

Lack of zero side-effect, prescription-less prophylactics and diagnostic markers of acclimatization status lead to many suffering from high altitude illnesses. Although not fully translated to the clinical setting, many strategies and interventions are being developed that are aimed at providing an objective and tangible answer regarding the acclimatization status of an individual as well as zero side-effect prophylaxis that is cost-effective and does not require medical supervision. This short review brings together the twin problems associated with high-altitude acclimatization, i.e. acclimatization status and zero side-effect, easy-to-use prophylaxis, for the reader to comprehend as cogs of the same phenomenon. We describe current research aimed at preventing all the high-altitude illnesses by considering them an assault on redox and energy homeostasis at the molecular level. This review also entails some proteins capable of diagnosing either acclimatization or high-altitude illnesses. The future strategies based on bioinformatics and systems biology is also discussed.


Assuntos
Aclimatação , Doença da Altitude/diagnóstico , Biomarcadores/sangue , Edema Encefálico/prevenção & controle , Doença da Altitude/sangue , Humanos
11.
PLoS One ; 13(12): e0207359, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540756

RESUMO

Seasonal and human physiological changes are important factors in the development of many diseases. But, the study of genuine seasonal impact on these diseases is difficult to measure due to many other environment and lifestyle factors which directly affect these diseases. However, several clinical studies have been conducted in different parts of the world, and it has clearly indicated that certain groups of population are highly subjected to seasonal changes, and their maladaptation can possibly lead to several disorders/diseases. Thus, it is crucial to study the significant seasonal sensitive diseases spread across the human population. To narrow down these disorders/diseases, the study hypothesized that high altitude (HA) associated diseases and disorders are of the strong variants of seasonal physiologic changes. It is because, HA is the only geographical condition for which humans can develop very efficient physiological adaptation mechanism called acclimatization. To study this hypothesis, PubMed was used to collect the HA associated symptoms and disorders. Disease Ontology based semantic similarity network (DSN) and disease-drug networks were constructed to narrow down the benchmark diseases and disorders of HA. The DSN which was further subjected to different community structure analysis uncovered the highly associated or possible comorbid diseases of HA. The predicted 12 lifestyle diseases were assumed to be "seasonal (sensitive) comorbid lifestyle diseases (SCLD)". A time series analyses on Google Search data of the world from 2004-2016 was conducted to investigate whether the 12 lifestyle diseases have seasonal patterns. Because, the trends were sensitive to the term used as benchmark; the temporal relationships among the 12 disease search volumes and their temporal sequences similarity by dynamic time warping analyses was used to predict the comorbid diseases. Among the 12 lifestyle diseases, the study provides an indirect evidence in the existence of severe seasonal comorbidity among hypertension, obesity, asthma and fibrosis diseases, which is widespread in the world population. Thus, the present study has successfully addressed this issue by predicting the SCLD, and indirectly verified them among the world population using Google Search Trend. Furthermore, based on the SCLD seasonal trend, the study also classified them as severe, moderate, and mild. Interestingly, seasonal trends of the severe seasonal comorbid diseases displayed an inverse pattern between USA (Northern hemisphere) and New Zealand (Southern hemisphere). Further, knowledge in the so called "seasonal sensitive populations" physiological response to seasonal triggers such as winter, summer, spring, and autumn become crucial to modulate disease incidence, disease course, or clinical prevention.


Assuntos
Comorbidade/tendências , Mineração de Dados , Doença Crônica , Humanos , Estilo de Vida , Estações do Ano
12.
J Indian Soc Periodontol ; 19(3): 322-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26229276

RESUMO

BACKGROUND: An association between oral conditions such as periodontal diseases and systemic conditions is noted. As such, periodontal disease is associated with an increased risk of systemic illnesses such as cardiovascular disease, diabetes, adverse pregnancy outcome, atherosclerosis, stroke and hospital acquired pneumonia. The concept of diagnosing and treating a potential patient to minimize the deleterious effects of this chronic infectious and inflammatory condition on systemic conditions represents both an unprecedented challenge and opportunity to our profession. Keeping this in view, the present survey was designed to evaluate the acquaintance, orientation and behavior of general medical practitioners; concerning the effects of periodontal disease on systemic health. MATERIALS AND METHODS: A typed questionnaire carrying four sets of questions was distributed among general medical practitioners of seven different government and private medical colleges and hospitals. Questionnaire was developed to assess the acquaintance, orientation and behavior of general medical practitioners toward periodontal disease. RESULTS: Most of the respondents have knowledge regarding the signs and symptoms of periodontal disease and its association with cardiovascular disease. However, majority of them do not know about the potential effect of periodontal disease on other organ systems. CONCLUSION: General medical practitioners have inadequate knowledge regarding periodontal diseases. Hence, oral health related training should be an integral part of the medical curriculum.

13.
Database (Oxford) ; 2013: bat074, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24178989

RESUMO

There has been intense interest in the cellular response to hypoxia, and a large number of differentially expressed proteins have been identified through various high-throughput experiments. These valuable data are scattered, and there have been no systematic attempts to document the various proteins regulated by hypoxia. Compilation, curation and annotation of these data are important in deciphering their role in hypoxia and hypoxia-related disorders. Therefore, we have compiled HypoxiaDB, a database of hypoxia-regulated proteins. It is a comprehensive, manually-curated, non-redundant catalog of proteins whose expressions are shown experimentally to be altered at different levels and durations of hypoxia. The database currently contains 72 000 manually curated entries taken on 3500 proteins extracted from 73 peer-reviewed publications selected from PubMed. HypoxiaDB is distinctive from other generalized databases: (i) it compiles tissue-specific protein expression changes under different levels and duration of hypoxia. Also, it provides manually curated literature references to support the inclusion of the protein in the database and establish its association with hypoxia. (ii) For each protein, HypoxiaDB integrates data on gene ontology, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway, protein-protein interactions, protein family (Pfam), OMIM (Online Mendelian Inheritance in Man), PDB (Protein Data Bank) structures and homology to other sequenced genomes. (iii) It also provides pre-compiled information on hypoxia-proteins, which otherwise requires tedious computational analysis. This includes information like chromosomal location, identifiers like Entrez, HGNC, Unigene, Uniprot, Ensembl, Vega, GI numbers and Genbank accession numbers associated with the protein. These are further cross-linked to respective public databases augmenting HypoxiaDB to the external repositories. (iv) In addition, HypoxiaDB provides an online sequence-similarity search tool for users to compare their protein sequences with HypoxiaDB protein database. We hope that HypoxiaDB will enrich our knowledge about hypoxia-related biology and eventually will lead to the development of novel hypothesis and advancements in diagnostic and therapeutic activities. HypoxiaDB is freely accessible for academic and non-profit users via http://www.hypoxiadb.com.


Assuntos
Bases de Dados de Proteínas , Hipóxia/metabolismo , Cromossomos Humanos/metabolismo , Ontologia Genética , Humanos , Homologia de Sequência de Aminoácidos , Interface Usuário-Computador
14.
BMC Res Notes ; 5: 617, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23122428

RESUMO

BACKGROUND: The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs) in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD) rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used 'Gene Ontology semantic similarity score' to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal) and disease (cancer) sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. RESULTS: Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95) identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1-4). Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1), chemotherapy/drug resistance biomarkers (panel 2), hypoxia regulated biomarkers (panel 3) and lung extra cellular matrix biomarkers (panel 4). CONCLUSIONS: Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3), HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1/SAG, AIB1 and AZIN1) are significantly down regulated. All down regulated genes in this panel were highly up regulated in most other types of cancers. These panels of proteins may represent signature biomarkers for lung cancer and will aid in lung cancer diagnosis and disease monitoring as well as in the prediction of responses to therapeutics.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Pulmonares/diagnóstico , Análise por Conglomerados , Etiquetas de Sequências Expressas , Humanos , Neoplasias Pulmonares/genética
15.
J Indian Soc Periodontol ; 13(3): 172-4, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20379419

RESUMO

It is important for a dentist to be well informed and updated on the latest research on the association of oral and systemic health. Of late, the metabolic syndrome has gained importance in dental literature, and metabolic syndrome and periodontal disease have been linked. Metabolic syndrome (MeS) is a group of three or more (up to five) interrelated metabolic abnormalities, which increases the risk of cardiovascular morbidity and mortality. Also, both MeS and periodontal disease may be linked through a common pathophysiological pathway. Some studies have been conducted to show such an association and additional studies are required to establish this association. A dental surgeon can play a major role in evaluating patients with MeS and thus prevent the development of overt cardiovascular disease.

16.
J Indian Soc Periodontol ; 13(2): 106-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-20407660

RESUMO

Tuberculosis is a chronic specific granulomatous disease and a major cause of death in developing countries. The clinical presentation of tuberculosis lesions of oral cavity varies widely, including ulceration, diffuse inflammatory lesions, granulomas and fissures. Oral lesions usually appear as secondary to primary tuberculosis infection elsewhere, although primary infection of the oral mucosa by Mycobacterium tuberculosis has been described. We report a case of tuberculosis of gingiva, manifesting as gingival enlargement. Diagnosis was based on histopathological examination, complete blood count, X-ray chest and immunological investigations with detection of antibodies against Mycobacterium tuberculosis. Anti-tuberculous therapy was carried out for over six months. This case report emphasizes the need for dentists to include tuberculosis in the differential diagnosis of various types of gingival enlargements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA