Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Toxicol Environ Health A ; 75(7): 391-401, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22524594

RESUMO

Small retroelements (short interspersed elements, abbreviated SINEs) are abundant in vertebrate genomes. Using RNA isolated from rhesus monkey cerebellum and buffy coat, reverse-transcription polymerase chain reaction (RT PCR) was applied to clone cDNA of BC200 and Alu RNAs. Transcripts containing Alu-SINE sequences may be subjected to extensive RNA editing by ADAR (adenosine deaminases that act on RNA) deamination. Abundance of Alu transcripts was determined with real-time RT PCR and was significantly higher than BC200 (brain cytoplasmic) in cerebellum. BC200 transcripts were absent from buffy coat cells. Availability of the rhesus genome sequence allowed the BC200 transcripts to be mapped to the specific locus on chromosome 13. Both the qualitative and quantitative characteristics of BC 200 expression argue for the BC 200 transcripts being generated by RNA polymerase III. In cerebellum, Alu transcripts often possessed base exchanges (A to G) consistent with ADAR editing and, somewhat unexpectedly, C to T exchanges consistent with APOBEC (apolipoprotein B editing complex) editing. In contrast, the BC200 transcripts, which as RNA POLIII transcripts play a role in dendritic RNA translation, appeared not to be deaminated, despite the presence of editing of Alu in the same tissue. To assess whether neuronal disease might influence editing of BC200 and Alu-SINE transcripts in cerebellum, RNA was isolated from two rhesus monkeys that were inoculated with prions from human variant Creutzfeldt-Jakob disease (vCJD). Regardless of prion-induced neurodegeneration, no BC200 RNA editing was observed, while Alu RNA continued to show both ADAR and APOBEC editing. Thus, BC200 RNAs do not appear to become accessible to editing enzymes despite infected neurons being subjected to severe stress, damage, and eventually cell death.


Assuntos
Cerebelo/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Edição de RNA , RNA/metabolismo , Elementos Nucleotídeos Curtos e Dispersos , Elementos Alu , Animais , Sequência de Bases , DNA Complementar/análise , Macaca mulatta , Dados de Sequência Molecular , RNA Polimerase III/metabolismo , Pequeno RNA não Traduzido/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
2.
J Toxicol Environ Health A ; 74(2-4): 88-95, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21218337

RESUMO

Editing of RNA molecules gained major interest when coding mRNA was analyzed. A small, noncoding, Alu DNA element transcript that may act as regulatory RNA in cells was examined in this study. Alu DNA element transcription was determined in buffy coat from healthy humans and human sporadic Creutzfeldt-Jakob disease (sCJD) cases. In addition, non-sCJD controls, mostly dementia cases and Alzheimer's disease (AD) cases, were included. The Alu cDNA sequences were aligned to genomic Alu DNA elements by database search. A comparison of best aligned Alu DNA sequences with our RNA/cDNA clones revealed editing by deamination by ADAR (adenosine deaminase acting on RNA) and APOBEC (apolipoprotein B editing complex). Nucleotide exchanges like a G instead of an A or a T instead of a C in our cDNA sequences versus genomic Alu DNA pointed to recent mutations. To confirm this, our Alu cDNA sequences were aligned not only to genomic human Alu DNA but also to the respective genomic DNA of the chimpanzee and rhesus. Enhanced ADAR correlated with A-G exchanges in dementia, AD, and sCJD was noted when compared to healthy controls as well as APOBEC-related C-T exchanges. The APOBEC-related mutations were higher in healthy controls than in cases suffering from neurodegeneration, with the exception of the dementia group with the prion protein gene (PRNP) MV genotype. Hence, this study may be considered the first real-time analysis of Alu DNA element transcripts with regard to editing of the respective Alu transcripts in human blood cells.


Assuntos
Elementos Alu/genética , Síndrome de Creutzfeldt-Jakob/genética , Edição de RNA/genética , Animais , Sequência de Bases , Clonagem Molecular , Síndrome de Creutzfeldt-Jakob/etiologia , DNA Complementar/genética , Humanos , Macaca mulatta/genética , Dados de Sequência Molecular , Pan troglodytes/genética , Príons/genética , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Transcrição Gênica/genética
3.
Elife ; 102021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34734804

RESUMO

Intraflagellar transport (IFT) is a highly conserved mechanism for motor-driven transport of cargo within cilia, but how this cargo is selectively transported to cilia is unclear. WDR35/IFT121 is a component of the IFT-A complex best known for its role in ciliary retrograde transport. In the absence of WDR35, small mutant cilia form but fail to enrich in diverse classes of ciliary membrane proteins. In Wdr35 mouse mutants, the non-core IFT-A components are degraded and core components accumulate at the ciliary base. We reveal deep sequence homology of WDR35 and other IFT-A subunits to α and ß' COPI coatomer subunits and demonstrate an accumulation of 'coat-less' vesicles that fail to fuse with Wdr35 mutant cilia. We determine that recombinant non-core IFT-As can bind directly to lipids and provide the first in situ evidence of a novel coat function for WDR35, likely with other IFT-A proteins, in delivering ciliary membrane cargo necessary for cilia elongation.


Most human cells have at least one small hair-like structure on their surface called a cilium. These structures can act as antennae and allow the cell to sense signals from the rest of the body. To do this, they contain proteins that differ from the rest of the cell. The content of cilia depends on regulated delivery of these proteins in and out of cilia by a process called the intraflagellar transport or IFT, which involves a large complex made of several proteins. This complex shuttles the cargo proteins back and forth between the base and the tip of the cilia. However, ciliary proteins are not produced in the cilia; instead, they are made in a different part of the cell and then they are transported to the ciliary base. At the point where they enter the cilia, they were thought to bind to the assembling IFT 'trains' and be transported across the ciliary gate to the positions where they are needed in cilia. One of the components of the IFT machinery is a protein called WDR35, also known as IFT121. If the gene that codes for this protein is faulty or missing, it results in severe disorders in both humans and mice including a range of potentially lethal skeletal dysplasias. Interestingly, without WDR35, cells cannot build functional cilia. The absence of this protein not only disrupts IFT, stopping certain ciliary proteins and their associated membranes from entering cilia; it also causes a 'traffic jam' with a pile-up of transport intermediates from the place in cell where they are made to the cilia. It is unclear why a mutation in one of the components of the IFT would have this effect, raising the question of whether WDR35, or IFTs a whole, has another role in bringing the cargo proteins into the cilia. To understand this phenomenon, Quidwai et al. analysed the structure of WDR35 and other IFT proteins and found that they are very similar to a protein complex called COPI, which is involved in transporting membrane proteins around the cell. When certain proteins are newly made, they are stored in small lipid bubbles ­ called vesicles ­ that then selectively move to where the proteins are needed. COPI coats these vesicles, helping them get to where they need to go in a process called vesicular transport. Quidwai et al. found that WDR35 and other IFT proteins are able to bind to specific types of lipid molecules, suggesting that they might be assisting in a form of vesicle transport too. Indeed, when mouse cells grown in the lab were genetically engineered so they could not produce WDR35, coatless vesicles accumulated around the base of the cilia. Adding back WDR35 to these mutant cells rescued these defects in vesicle transport to cilia as well as allowed functional cilia to be formed. These results provide evidence that WDR35, likely with other IFT proteins, acts as a COPI-like complex to deliver proteins to growing cilia. Further research will investigate the composition of these vesicles that transport proteins to cilia, and help pinpoint where they originate. Quidwai et al.'s findings not only shed light on how different genetic mutations found in patients with cilia dysfunction affect different steps of transporting proteins to and within cilia. They also increase our understanding of the cellular roadmap by which cells shuttle building blocks around in order to assemble these important 'antennae'.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Proteínas do Citoesqueleto/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Proteínas do Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Ligação Proteica , Transporte Proteico
4.
Nat Struct Mol Biol ; 27(12): 1115-1124, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32989303

RESUMO

Primary cilia are microtubule-based organelles that are important for signaling and sensing in eukaryotic cells. Unlike the thoroughly studied motile cilia, the three-dimensional architecture and molecular composition of primary cilia are largely unexplored. Yet, studying these aspects is necessary to understand how primary cilia function in health and disease. We developed an enabling method for investigating the structure of primary cilia isolated from MDCK-II cells at molecular resolution by cryo-electron tomography. We show that the textbook '9 + 0' arrangement of microtubule doublets is only present at the primary cilium base. A few microns out, the architecture changes into an unstructured bundle of EB1-decorated microtubules and actin filaments, putting an end to a long debate on the presence or absence of actin filaments in primary cilia. Our work provides a plethora of insights into the molecular structure of primary cilia and offers a methodological framework to study these important organelles.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Cílios/ultraestrutura , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/ultraestrutura , Citoesqueleto de Actina/metabolismo , Animais , Técnicas de Cultura de Células , Chlamydomonas/metabolismo , Chlamydomonas/ultraestrutura , Cílios/metabolismo , Microscopia Crioeletrônica , Cães , Tomografia com Microscopia Eletrônica , Expressão Gênica , Humanos , Células Madin Darby de Rim Canino , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo
5.
Sci Rep ; 9(1): 12191, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434932

RESUMO

Apical projections are integral functional units of epithelial cells. Microvilli and stereocilia are cylindrical apical projections that are formed of bundled actin. Microridges on the other hand, extend laterally, forming labyrinthine patterns on surfaces of various kinds of squamous epithelial cells. So far, the structural organization and functions of microridges have remained elusive. We have analyzed microridges on zebrafish epidermal cells using confocal and electron microscopy methods including electron tomography, to show that microridges are formed of F-actin networks and require the function of the Arp2/3 complex for their maintenance. During development, microridges begin as F-actin punctae showing signatures of branching and requiring an active Arp2/3 complex. Using inhibitors of actin polymerization and the Arp2/3 complex, we show that microridges organize the surface glycan layer. Our analyses have unraveled the F-actin organization supporting the most abundant and evolutionarily conserved apical projection, which functions in glycan organization.


Assuntos
Actinas/metabolismo , Células Epidérmicas/ultraestrutura , Microvilosidades/patologia , Polissacarídeos/metabolismo , Citoesqueleto de Actina , Complexo 2-3 de Proteínas Relacionadas à Actina/antagonistas & inibidores , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/química , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células Epidérmicas/citologia , Microscopia Confocal , Microscopia Eletrônica , Microvilosidades/efeitos dos fármacos , Polissacarídeos/química , Tiazolidinas/farmacologia , Peixe-Zebra
6.
Prion ; 4(2): 87-93, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20424511

RESUMO

Alu DNA elements were long considered to be of no biological significance and thus have been only poorly defined. However, in the past Alu DNA elements with well-defined nucleotide sequences have been suspected to contribute to disease, but the role of Alu DNA element transcripts has rarely been investigated. For the first time, we determined in a real-time approach Alu DNA element transcription in buffy coat cells isolated from the blood of humans suffering from sporadic Creutzfeldt-Jakob disease (sCJD) and other neurodegenerative disorders. The reverse transcribed Alu transcripts were amplified and their cDNA sequences were aligned to genomic regions best fitted to database genomic Alu DNA element sequences deposited in the UCSC and NCBI data bases. Our cloned Alu RNA/cDNA sequences were widely distributed in the human genome and preferably belonged to the "young" Alu Y family. We also observed that some RNA/cDNA clones could be aligned to several chromosomes because of the same degree of identity and score to resident genomic Alu DNA elements. These elements, called paralogues, have purportedly been recently generated by retrotransposition. Along with cases of sCJD we also included cases of dementia and Alzheimer disease (AD). Each group revealed a divergent pattern of transcribed Alu elements. Chromosome 2 was the most preferred site in sCJD cases, besides chromosome 17; in AD cases chromosome 11 was overrepresented whereas chromosomes 2, 3 and 17 were preferred active Alu loci in controls. Chromosomes 2, 12 and 17 gave rise to Alu transcripts in dementia cases. The detection of putative Alu paralogues widely differed depending on the disease. A detailed data search revealed that some cloned Alu transcripts originated from RNA polymerase III transcription since the genomic sites of their Alu elements were found between genes. Other Alu DNA elements could be located close to or within coding regions of genes. In general, our observations suggest that identification and genomic localization of active Alu DNA elements could be further developed as a surrogate marker for differential gene expression in disease. A sufficient number of cases are necessary for statistical significance before Alu DNA elements can be considered useful to differentiate neurodegenerative diseases from controls.


Assuntos
Elementos Alu , Síndrome de Creutzfeldt-Jakob/sangue , Síndrome de Creutzfeldt-Jakob/genética , Sequência de Bases , Buffy Coat/patologia , Buffy Coat/fisiologia , Estudos de Casos e Controles , Mapeamento Cromossômico , DNA Complementar/sangue , DNA Complementar/genética , Regulação da Expressão Gênica , Frequência do Gene , Humanos , Dados de Sequência Molecular , RNA/sangue , RNA/genética , Transcrição Reversa , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA